I am trying to write a C code to generate all possible partitions (into 2 or more parts) with distinct elements of a given number. The sum of all the numbers of a given partition should be equal to the given number. For example, for input n = 6
, all possible partitions having 2 or more elements with distinct elements are:
I think a recursive approach should work, but I am unable to take care of the added constraint of distinct elements. A pseudo code or a sample code in C/C++/Java would be greatly appreciated.
Thanks!
Edit: If it makes things easier, I can ignore the restriction of the partitions having atleast 2 elements. This will allow the number itself to be added to the list (eg, 6 itself will be a trivial but valid partition).
I sketched this solution (it can be beautified and optimized) that shouldn't generate duplicates:
void partitions(int target, int curr, int* array, int idx)
{
if (curr + array[idx] == target)
{
for (int i=0; i <= idx; i++)
cout << array[i] << " ";
cout << endl;
return;
}
else if (curr + array[idx] > target)
{
return;
}
else
{
for(int i = array[idx]+1; i < target; i++)
{
array[idx+1] = i;
partitions(target, curr + array[idx], array, idx+1);
}
}
}
int main(){
int array[100];
int N = 6;
for(int i = 1; i < N; i++)
{
array[0] = i;
partitions(N, 0, array, 0);
}
}
What you're trying to do doesn't make a lot of sense to me but here's how I would approach it.
First, I'd create a loop that iterates i
from 1 to n
- 1. In the first loop, you could add the partition 1, i. Then I'd go recursive using the value in i
to get all the sub-partitions that can also be added to 1.
And then continue to 2, and so on.
First, write a recursive algorithm that returns all partitions, including those that contain repeats.
Second, write an algorithm that eliminates partitions that contain duplicate elements.
EDIT:
You can avoid results with duplicates by avoiding making recursive calls for already-seen numbers. Pseudocode:
Partitions(n, alreadySeen)
1. if n = 0 then return {[]}
2. else then
3. results = {}
4. for i = 1 to n do
5. if i in alreadySeen then continue
6. else then
7. subresults = Partitions(n - i, alreadySeen UNION {i})
8. for subresult in subresults do
9. results = results UNION {[i] APPEND subresult}
10. return results
EDIT:
You can also avoid generating the same result more than once. Do this by modifying the range of the loop, so that you only add new elements in a monotonically increasing fashion:
Partitions(n, mustBeGreaterThan)
1. if n = 0 then return {[]}
2. else then
3. results = {}
4. for i = (mustBeGreaterThan + 1) to n do
5. subresults = Partitions(n - i, i)
6. for subresult in subresults do
7. results = results UNION {[i] APPEND subresult}
8. return results
You don't need recursion at all. The list of numbers is essentially a stack, and by iterating in order you ensure no duplicates.
Here's a version which shows what I mean (you tagged this C, so I wrote it in C. In C++ you could use a dynamic container with push and pop, and tidy this up considerably).
#include <stdio.h>
#include <stdlib.h>
void partition(int part)
{
int *parts;
int *ptr;
int i;
int idx = 0;
int tot = 0;
int cur = 1;
int max = 1;
while((max * (max + 1)) / 2 <= part) max++;
ptr = parts = malloc(sizeof(int) * max);
for(;;) {
if((tot += *ptr++ = cur++) < part) continue;
if(tot == part) {
for(i = 0 ; i < ptr-parts ; i++) {printf("%d ",parts[i]);}
printf("\n");
}
do {
if(ptr == parts) {free(parts); return;}
tot -= cur = *--ptr;
} while(++cur + tot > part);
}
}
int main(int argc, char* argv[])
{
partition(6);
return 0;
}