I recently got stuck in a situation like this:
class A
{
public:
typedef struct/class {...} B;
...
C::D *someField;
}
class C
{
public:
typedef struct/class {...} D;
...
A::B *someField;
}
Usually you can declare a class name:
class A;
But you can\'t forward declare a nested type, the following causes compilation error.
class C::D;
Any ideas?
You can\'t do it, it\'s a hole in the C++ language. You\'ll have to un-nest at least one of the nested classes.
class IDontControl
{
class Nested
{
Nested(int i);
};
};
I needed a forward reference like:
class IDontControl::Nested; // But this doesn\'t work.
My workaround was:
class IDontControl_Nested; // Forward reference to distinct name.
Later when I could use the full definition:
#include <idontcontrol.h>
// I defined the forward ref like this:
class IDontControl_Nested : public IDontControl::Nested
{
// Needed to make a forwarding constructor here
IDontControl_Nested(int i) : Nested(i) { }
};
This technique would probably be more trouble than it\'s worth if there were complicated constructors or other special member functions that weren\'t inherited smoothly. I could imagine certain template magic reacting badly.
But in my very simple case, it seems to work.
If you really want to avoid #including the nasty header file in your header file, you could do this:
hpp file:
class MyClass
{
public:
template<typename ThrowAway>
void doesStuff();
};
cpp file
#include \"MyClass.hpp\"
#include \"Annoying-3rd-party.hpp\"
template<> void MyClass::doesStuff<This::Is::An::Embedded::Type>()
{
// ...
}
But then:
- you will have to specify the embedded type at call time (especially if your function does not take any parameters of the embedded type)
- your function can not be virtual (because it is a template)
So, yeah, tradeoffs...
This can be done by forward declare the outer class as a namespace.
Sample: We have to use a nested class others::A::Nested in others_a.h, which is out of our control.
others_a.h
namespace others {
struct A {
struct Nested {
Nested(int i) :i(i) {}
int i{};
void print() const { std::cout << i << std::endl; }
};
};
}
my_class.h
#ifndef MY_CLASS_CPP
// A is actually a class
namespace others { namespace A { class Nested; } }
#endif
class MyClass {
public:
MyClass(int i);
~MyClass();
void print() const;
private:
std::unique_ptr<others::A::Nested> _aNested;
};
my_class.cpp
#include \"others_a.h\"
#define MY_CLASS_CPP // Must before include my_class.h
#include \"my_class.h\"
MyClass::MyClass(int i) :
_aNested(std::make_unique<others::A::Nested>(i)) {}
MyClass::~MyClass() {}
void MyClass::print() const {
_aNested->print();
}
I would not call this an answer, but nonetheless an interesting find:
If you repeat the declaration of your struct in a namespace called C, everything is fine (in gcc at least).
When the class definition of C is found, it seems to silently overwrite the namspace C.
namespace C {
typedef struct {} D;
}
class A
{
public:
typedef struct/class {...} B;
...
C::D *someField;
}
class C
{
public:
typedef struct/class {...} D;
...
A::B *someField;
}
This would be a workaround (at least for the problem described in the question -- not for the actual problem, i.e., when not having control over the definition of C
):
class C_base {
public:
class D { }; // definition of C::D
// can also just be forward declared, if it needs members of A or A::B
};
class A {
public:
class B { };
C_base::D *someField; // need to call it C_base::D here
};
class C : public C_base { // inherits C_base::D
public:
// Danger: Do not redeclare class D here!!
// Depending on your compiler flags, you may not even get a warning
// class D { };
A::B *someField;
};
int main() {
A a;
C::D * test = a.someField; // here it can be called C::D
}