python pandas replacing strings in dataframe with

2019-02-03 04:07发布

问题:

Is there anyway to use the mapping function or something better to replace values in an entire dataframe?

I only know how to perform the mapping on series.

I would like to replace the strings in the 'tesst' and 'set' column with a number for example set = 1, test =2

Here is a example of my dataset: (Original dataset is very large)

ds_r
  respondent  brand engine  country  aware  aware_2  aware_3  age tesst   set
0          a  volvo      p      swe      1        0        1   23   set   set
1          b  volvo   None      swe      0        0        1   45   set   set
2          c    bmw      p       us      0        0        1   56  test  test
3          d    bmw      p       us      0        1        1   43  test  test
4          e    bmw      d  germany      1        0        1   34   set   set
5          f   audi      d  germany      1        0        1   59   set   set
6          g  volvo      d      swe      1        0        0   65  test   set
7          h   audi      d      swe      1        0        0   78  test   set
8          i  volvo      d       us      1        1        1   32   set   set

Final result should be

 ds_r
  respondent  brand engine  country  aware  aware_2  aware_3  age  tesst  set
0          a  volvo      p      swe      1        0        1   23      1    1
1          b  volvo   None      swe      0        0        1   45      1    1
2          c    bmw      p       us      0        0        1   56      2    2
3          d    bmw      p       us      0        1        1   43      2    2
4          e    bmw      d  germany      1        0        1   34      1    1
5          f   audi      d  germany      1        0        1   59      1    1
6          g  volvo      d      swe      1        0        0   65      2    1
7          h   audi      d      swe      1        0        0   78      2    1
8          i  volvo      d       us      1        1        1   32      1    1

grateful for advise,

回答1:

What about DataFrame.replace?

In [9]: mapping = {'set': 1, 'test': 2}

In [10]: df.replace({'set': mapping, 'tesst': mapping})
Out[10]: 
   Unnamed: 0 respondent  brand engine  country  aware  aware_2  aware_3  age  \
0           0          a  volvo      p      swe      1        0        1   23   
1           1          b  volvo   None      swe      0        0        1   45   
2           2          c    bmw      p       us      0        0        1   56   
3           3          d    bmw      p       us      0        1        1   43   
4           4          e    bmw      d  germany      1        0        1   34   
5           5          f   audi      d  germany      1        0        1   59   
6           6          g  volvo      d      swe      1        0        0   65   
7           7          h   audi      d      swe      1        0        0   78   
8           8          i  volvo      d       us      1        1        1   32   

  tesst set  
0     2   1  
1     1   2  
2     2   1  
3     1   2  
4     2   1  
5     1   2  
6     2   1  
7     1   2  
8     2   1  

As @Jeff pointed out in the comments, in pandas versions < 0.11.1, manually tack .convert_objects() onto the end to properly convert tesst and set to int64 columns, in case that matters in subsequent operations.



回答2:

I know this is old, but adding for those searching as I was. Create a dataframe in pandas, df in this code

ip_addresses = df.source_ip.unique()
ip_dict = dict(zip(ip_addresses, range(len(ip_addresses))))

That will give you a dictionary map of the ip addresses without having to write it out.



回答3:

You can use the applymap DataFrame function to do this:

In [26]: df = DataFrame({"A": [1,2,3,4,5], "B": ['a','b','c','d','e'],
                         "C": ['b','a','c','c','d'], "D": ['a','c',7,9,2]})
In [27]: df
Out[27]:
   A  B  C  D
0  1  a  b  a
1  2  b  a  c
2  3  c  c  7
3  4  d  c  9
4  5  e  d  2

In [28]: mymap = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}

In [29]: df.applymap(lambda s: mymap.get(s) if s in mymap else s)
Out[29]:
   A  B  C  D
0  1  1  2  1
1  2  2  1  3
2  3  3  3  7
3  4  4  3  9
4  5  5  4  2


回答4:

To convert Strings like 'volvo','bmw' into integers first convert it to a dataframe then pass it to pandas.get_dummies()

  df  = DataFrame.from_csv("myFile.csv")
  df_transform = pd.get_dummies( df )
  print( df_transform )


回答5:

You can also do this with pandas rename_categories. You would first need to define the column as dtype="category" e.g.

In [66]: s = pd.Series(["a","b","c","a"], dtype="category")

In [67]: s
Out[67]: 
0    a
1    b
2    c
3    a
dtype: category
Categories (3, object): [a, b, c]

and then rename them:

In [70]: s.cat.rename_categories([1,2,3])
Out[70]: 
0    1
1    2
2    3
3    1
dtype: category
Categories (3, int64): [1, 2, 3]

You can also pass a dict-like object to map the renaming, e.g.:

In [72]: s.cat.rename_categories({1: 'x', 2: 'y', 3: 'z'})


回答6:

When no of features are not much :

mymap = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
df.applymap(lambda s: mymap.get(s) if s in mymap else s)

When it's not possible manually :

temp_df2 = pd.DataFrame({'data': data.data.unique(), 'data_new':range(len(data.data.unique()))})# create a temporary dataframe 
data = data.merge(temp_df2, on='data', how='left')# Now merge it by assigning different values to different strings.