可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I'm trying to preform recursive feature elimination using scikit-learn
and a random forest classifier, with OOB ROC as the method of scoring each subset created during the recursive process.
However, when I try to use the RFECV
method, I get an error saying AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'
Random Forests don't have coefficients per se, but they do have rankings by Gini score. So, I'm wondering how to get arround this problem.
Please note that I want to use a method that will explicitly tell me what features from my pandas
DataFrame were selected in the optimal grouping as I am using recursive feature selection to try to minimize the amount of data I will input into the final classifier.
Here's some example code:
from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV
iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=pd.Series(iris.target, name='target')
rf = RandomForestClassifier(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=10, scoring='ROC', verbose=2)
selector=rfecv.fit(x, y)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 336, in fit
ranking_ = rfe.fit(X_train, y_train).ranking_
File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 148, in fit
if estimator.coef_.ndim > 1:
AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'
回答1:
Here's what I've done to adapt RandomForestClassifier to work with RFECV:
class RandomForestClassifierWithCoef(RandomForestClassifier):
def fit(self, *args, **kwargs):
super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs)
self.coef_ = self.feature_importances_
Just using this class does the trick if you use 'accuracy' or 'f1' score. For 'roc_auc', RFECV complains that multiclass format is not supported. Changing it to two-class classification with the code below, the 'roc_auc' scoring works. (Using Python 3.4.1 and scikit-learn 0.15.1)
y=(pd.Series(iris.target, name='target')==2).astype(int)
Plugging into your code:
from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV
class RandomForestClassifierWithCoef(RandomForestClassifier):
def fit(self, *args, **kwargs):
super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs)
self.coef_ = self.feature_importances_
iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=(pd.Series(iris.target, name='target')==2).astype(int)
rf = RandomForestClassifierWithCoef(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=2, scoring='roc_auc', verbose=2)
selector=rfecv.fit(x, y)
回答2:
This is my code, I've tidied it up a bit to make it relevant to your task:
features_to_use = fea_cols # this is a list of features
# empty dataframe
trim_5_df = DataFrame(columns=features_to_use)
run=1
# this will remove the 5 worst features determined by their feature importance computed by the RF classifier
while len(features_to_use)>6:
print('number of features:%d' % (len(features_to_use)))
# build the classifier
clf = RandomForestClassifier(n_estimators=1000, random_state=0, n_jobs=-1)
# train the classifier
clf.fit(train[features_to_use], train['OpenStatusMod'].values)
print('classifier score: %f\n' % clf.score(train[features_to_use], df['OpenStatusMod'].values))
# predict the class and print the classification report, f1 micro, f1 macro score
pred = clf.predict(test[features_to_use])
print(classification_report(test['OpenStatusMod'].values, pred, target_names=status_labels))
print('micro score: ')
print(metrics.precision_recall_fscore_support(test['OpenStatusMod'].values, pred, average='micro'))
print('macro score:\n')
print(metrics.precision_recall_fscore_support(test['OpenStatusMod'].values, pred, average='macro'))
# predict the class probabilities
probs = clf.predict_proba(test[features_to_use])
# rescale the priors
new_probs = kf.cap_and_update_priors(priors, probs, private_priors, 0.001)
# calculate logloss with the rescaled probabilities
print('log loss: %f\n' % log_loss(test['OpenStatusMod'].values, new_probs))
row={}
if hasattr(clf, "feature_importances_"):
# sort the features by importance
sorted_idx = np.argsort(clf.feature_importances_)
# reverse the order so it is descending
sorted_idx = sorted_idx[::-1]
# add to dataframe
row['num_features'] = len(features_to_use)
row['features_used'] = ','.join(features_to_use)
# trim the worst 5
sorted_idx = sorted_idx[: -5]
# swap the features list with the trimmed features
temp = features_to_use
features_to_use=[]
for feat in sorted_idx:
features_to_use.append(temp[feat])
# add the logloss performance
row['logloss']=[log_loss(test['OpenStatusMod'].values, new_probs)]
print('')
# add the row to the dataframe
trim_5_df = trim_5_df.append(DataFrame(row))
run +=1
So what I'm doing here is I have a list of features I want to train and then predict against, using the feature importances I then trim the worst 5 and repeat. During each run I add a row to record the prediction performance so that I can do some analysis later.
The original code was much bigger I had different classifiers and datasets I was analysing but I hope you get the picture from the above. The thing I noticed was that for random forest the number of features I removed on each run affected the performance so trimming by 1, 3 and 5 features at a time resulted in a different set of best features.
I found that using a GradientBoostingClassifer was more predictable and repeatable in the sense that the final set of best features agreed whether I trimmed 1 feature at a time or 3 or 5.
I hope I'm not teaching you to suck eggs here, you probably know more than me, but my approach to ablative anlaysis was to use a fast classifier to get a rough idea of the best sets of features, then use a better performing classifier, then start hyper parameter tuning, again doing coarse grain comaprisons and then fine grain once I get a feel of what the best params were.
回答3:
I submitted a request to add coef_
so RandomForestClassifier
may be used with RFECV
. However, the change had already been made. This change will be in version 0.17.
https://github.com/scikit-learn/scikit-learn/issues/4945
You can pull the latest dev build if you want to use it now.
回答4:
Here's what I ginned up. It's a pretty simple solution, and relies on a custom accuracy metric (called weightedAccuracy) since I'm classifying a highly unbalanced dataset. But, it should be easily made more extensible if desired.
from sklearn import datasets
import pandas
from sklearn.ensemble import RandomForestClassifier
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
def get_enhanced_confusion_matrix(actuals, predictions, labels):
""""enhances confusion_matrix by adding sensivity and specificity metrics"""
cm = confusion_matrix(actuals, predictions, labels = labels)
sensitivity = float(cm[1][1]) / float(cm[1][0]+cm[1][1])
specificity = float(cm[0][0]) / float(cm[0][0]+cm[0][1])
weightedAccuracy = (sensitivity * 0.9) + (specificity * 0.1)
return cm, sensitivity, specificity, weightedAccuracy
iris = datasets.load_iris()
x=pandas.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=pandas.Series(iris.target, name='target')
response, _ = pandas.factorize(y)
xTrain, xTest, yTrain, yTest = cross_validation.train_test_split(x, response, test_size = .25, random_state = 36583)
print "building the first forest"
rf = RandomForestClassifier(n_estimators = 500, min_samples_split = 2, n_jobs = -1, verbose = 1)
rf.fit(xTrain, yTrain)
importances = pandas.DataFrame({'name':x.columns,'imp':rf.feature_importances_
}).sort(['imp'], ascending = False).reset_index(drop = True)
cm, sensitivity, specificity, weightedAccuracy = get_enhanced_confusion_matrix(yTest, rf.predict(xTest), [0,1])
numFeatures = len(x.columns)
rfeMatrix = pandas.DataFrame({'numFeatures':[numFeatures],
'weightedAccuracy':[weightedAccuracy],
'sensitivity':[sensitivity],
'specificity':[specificity]})
print "running RFE on %d features"%numFeatures
for i in range(1,numFeatures,1):
varsUsed = importances['name'][0:i]
print "now using %d of %s features"%(len(varsUsed), numFeatures)
xTrain, xTest, yTrain, yTest = cross_validation.train_test_split(x[varsUsed], response, test_size = .25)
rf = RandomForestClassifier(n_estimators = 500, min_samples_split = 2,
n_jobs = -1, verbose = 1)
rf.fit(xTrain, yTrain)
cm, sensitivity, specificity, weightedAccuracy = get_enhanced_confusion_matrix(yTest, rf.predict(xTest), [0,1])
print("\n"+str(cm))
print('the sensitivity is %d percent'%(sensitivity * 100))
print('the specificity is %d percent'%(specificity * 100))
print('the weighted accuracy is %d percent'%(weightedAccuracy * 100))
rfeMatrix = rfeMatrix.append(
pandas.DataFrame({'numFeatures':[len(varsUsed)],
'weightedAccuracy':[weightedAccuracy],
'sensitivity':[sensitivity],
'specificity':[specificity]}), ignore_index = True)
print("\n"+str(rfeMatrix))
maxAccuracy = rfeMatrix.weightedAccuracy.max()
maxAccuracyFeatures = min(rfeMatrix.numFeatures[rfeMatrix.weightedAccuracy == maxAccuracy])
featuresUsed = importances['name'][0:maxAccuracyFeatures].tolist()
print "the final features used are %s"%featuresUsed