I was having a discussion about the relative cost of fork() Vs thread() for parallelization of a task.
We understand the basic differences between processes Vs Thread
Thread:
- Easy to communicate between threads
- Fast context switching.
Processes:
- Fault tolerance.
- Communicating with parent not a real problem (open a pipe)
- Communication with other child processes hard
But we disagreed on the start-up cost of processes Vs threads.
So to test the theories I wrote the following code. My question: Is this a valid test of measuring the start-up cost or I am missing something. Also I would be interested in how each test performs on different platforms.
fork.cpp
#include <boost/lexical_cast.hpp>
#include <vector>
#include <unistd.h>
#include <iostream>
#include <stdlib.h>
#include <time.h>
extern "C" int threadStart(void* threadData)
{
return 0;
}
int main(int argc,char* argv[])
{
int threadCount = boost::lexical_cast<int>(argv[1]);
std::vector<pid_t> data(threadCount);
clock_t start = clock();
for(int loop=0;loop < threadCount;++loop)
{
data[loop] = fork();
if (data[looo] == -1)
{
std::cout << "Abort\n";
exit(1);
}
if (data[loop] == 0)
{
exit(threadStart(NULL));
}
}
clock_t middle = clock();
for(int loop=0;loop < threadCount;++loop)
{
int result;
waitpid(data[loop], &result, 0);
}
clock_t end = clock();
std::cout << threadCount << "\t" << middle - start << "\t" << end - middle << "\t"<< end - start << "\n";
}
Thread.cpp
#include <boost/lexical_cast.hpp>
#include <vector>
#include <iostream>
#include <pthread.h>
#include <time.h>
extern "C" void* threadStart(void* threadData)
{
return NULL;
}
int main(int argc,char* argv[])
{
int threadCount = boost::lexical_cast<int>(argv[1]);
std::vector<pthread_t> data(threadCount);
clock_t start = clock();
for(int loop=0;loop < threadCount;++loop)
{
if (pthread_create(&data[loop], NULL, threadStart, NULL) != 0)
{
std::cout << "Abort\n";
exit(1);
}
}
clock_t middle = clock();
for(int loop=0;loop < threadCount;++loop)
{
void* result;
pthread_join(data[loop], &result);
}
clock_t end = clock();
std::cout << threadCount << "\t" << middle - start << "\t" << end - middle << "\t"<< end - start << "\n";
}
I expect Windows to do worse in processes creation.
But I would expect modern Unix like systems to have a fairly light fork cost and be at least comparable to thread. On older Unix style systems (before fork() was implemented as using copy on write pages) that it would be worse.
Anyway My timing results are:
> uname -a
Darwin Alpha.local 10.4.0 Darwin Kernel Version 10.4.0: Fri Apr 23 18:28:53 PDT 2010; root:xnu-1504.7.4~1/RELEASE_I386 i386
> gcc --version | grep GCC
i686-apple-darwin10-gcc-4.2.1 (GCC) 4.2.1 (Apple Inc. build 5659)
> g++ thread.cpp -o thread -I~/include
> g++ fork.cpp -o fork -I~/include
> foreach a ( 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 50 60 70 80 90 100 )
foreach? ./thread ${a} >> A
foreach? end
> foreach a ( 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 50 60 70 80 90 100 )
foreach? ./fork ${a} >> A
foreach? end
vi A
Thread: Fork:
C Start Wait Total C Start Wait Total
==============================================================
1 26 145 171 1 160 37 197
2 44 198 242 2 290 37 327
3 62 234 296 3 413 41 454
4 77 275 352 4 499 59 558
5 91 107 10808 5 599 57 656
6 99 332 431 6 665 52 717
7 130 388 518 7 741 69 810
8 204 468 672 8 833 56 889
9 164 469 633 9 1067 76 1143
10 165 450 615 10 1147 64 1211
12 343 585 928 12 1213 71 1284
15 232 647 879 15 1360 203 1563
20 319 921 1240 20 2161 96 2257
30 461 1243 1704 30 3005 129 3134
40 559 1487 2046 40 4466 166 4632
50 686 1912 2598 50 4591 292 4883
60 827 2208 3035 60 5234 317 5551
70 973 2885 3858 70 7003 416 7419
80 3545 2738 6283 80 7735 293 8028
90 1392 3497 4889 90 7869 463 8332
100 3917 4180 8097 100 8974 436 9410
Edit:
Doing a 1000 children caused the fork version to fail.
So I have reduced the children count. But doing a single test also seems unfair so here is a range of values.