The problem
I am given N arrays of C booleans. I want to organize these into a datastructure that allows me to do the following operation as fast as possible: Given a new array, return true if this array is a "superset" of any of the stored arrays. With superset I mean this: A is a superset of B if A[i] is true for every i where B[i] is true. If B[i] is false, then A[i] can be anything.
Or, in terms of sets instead of arrays:
Store N sets (each with C possible elements) into a datastructure so you can quickly look up if a given set is a superset of any of the stored sets.
Building the datastructure can take as long as possible, but the lookup should be as efficient as possible, and the datastructure can't take too much space.
Some context
I think this is an interesting problem on its own, but for the thing I'm really trying to solve, you can assume the following:
- N = 10000
- C = 1000
- The stored arrays are sparse
- The looked up arrays are random (so not sparse)
What I've come up with so far
For O(NC) lookup: Just iterate all the arrays. This is just too slow though.
For O(C) lookup: I had a long description here, but as Amit pointed out in the comments, it was basically a BDD. While this has great lookup speed, it has an exponential number of nodes. With N and C so large, this takes too much space.
I hope that in between this O(N*C) and O(C) solution, there's maybe a O(log(N)*C) solution that doesn't require an exponential amount of space.
EDIT: A new idea I've come up with
For O(sqrt(N)C) lookup: Store the arrays as a prefix trie. When looking up an array A, go to the appropriate subtree if A[i]=0, but visit both subtrees if A[i]=1.
My intuition tells me that this should make the (average) complexity of the lookup O(sqrt(N)C), if you assume that the stored arrays are random. But: 1. they're not, the arrays are sparse. And 2. it's only intuition, I can't prove it.
I will try out both this new idea and the BDD method, and see which of the 2 work out best.
But in the meantime, doesn't this problem occur more often? Doesn't it have a name? Hasn't there been previous research? It really feels like I'm reinventing the wheel here.