I'm trying to do something as seen on the image is given below,
Just setting reverse diagonals white color is left. I couldn't set them as white. The chart takes integer values and I don't know what integer value is corresponding of white color.
Thank!
Edited:
Here is the code;
import math
from matplotlib import pyplot as plt
from matplotlib import cm as cm
import pylab
import numpy as np
from matplotlib.collections import LineCollection
class HeatMap:
def __init__(self, selectedLines):
self.selectedLines = selectedLines
def getHeapMap(self):
figure = plt.figure()
if len(self.selectedLines) != 0:
self.map = self.createTestMapData(len(self.selectedLines), len(self.selectedLines))
maxValueInMap = self.findMaxValueInMap(self.map)
x = np.arange(maxValueInMap + 1)
ys = [x + i for i in x]
ax = figure.add_subplot(111)
ax.imshow(self.map, cmap=cm.jet, interpolation='nearest')
'''
Left side label of the chart is created according to selected values
from a checkbox group.
'''
leftSideLabelSize = len(self.selectedLines)
sideLabels = []
for line in self.selectedLines:
sideLabels.append(line.text())
pos = np.arange(leftSideLabelSize)
'''
Left side labels are set with the code below.
'''
pylab.yticks(pos, sideLabels)
plt.xticks(pos, sideLabels)
self.numrows, self.numcols = self.map.shape
ax.format_coord = self.format_coord
line_segments = LineCollection([zip(x, y) for y in ys],
linewidths=(0.5, 3, 1.5, 2),
linestyles='solid')
line_segments.set_array(x)
axcb = figure.colorbar(line_segments)
return figure
def format_coord(self, x, y):
col = int(x + 0.5)
row = int(y + 0.5)
if col >= 0 and col < self.numcols and row >= 0 and row < self.numrows:
z = self.map[row, col]
return 'x=%1.4f, y=%1.4f, z=%1.4f' % (x, y, z)
else:
return 'x=%1.4f, y=%1.4f' % (x, y)
def createTestMapData(self, xSize, ySize):
resultMap = 10 * np.random.rand(xSize, ySize)
#Setting reverse diagonal is here. Now it is set with zero but it gives blue.
# I want it to be set as white
for index in range(0, int(math.sqrt(resultMap.size))):
resultMap[index][((math.sqrt(resultMap.size) - 1) - index )] = 0
return resultMap
def findMaxValueInMap(self, map):
return np.amax(map)
The values are generated randomly at the moment. The code is above gives a gui like;