可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I'm trying to see if anyone knows how to cluster some Lat/Long results, using a database, to reduce the number of results sent over the wire to the application.
There are a number of resources about how to cluster, either on the client side OR in the server (application) side .. but not in the database side :(
This is a similar question, asked by a fellow S.O. member. The solutions are server side based (ie. C# code behind).
Has anyone had any luck or experience with solving this, but in a database? Are there any database guru's out there who are after a hawt and sexy DB challenge?
please help :)
EDIT 1: Clarification - by clustering, i'm hoping to group x
number of points into a single point, for an area. So, if i say cluster everything in a 1 mile / 1 km square, then all the results in that 'square' are GROUP'D into a single result (say ... the middle of the square).
EDIT 2: I'm using MS Sql 2008, but i'm open to hearing if there are other solutions in other DB's.
回答1:
I'd probably use a modified* version of k-means clustering using the cartesian (e.g. WGS-84 ECF) coordinates for your points. It's easy to implement & converges quickly, and adapts to your data no matter what it looks like. Plus, you can pick k to suit your bandwidth requirements, and each cluster will have the same number of associated points (mod k).
I'd make a table of cluster centroids, and add a field to the original data table to indicate what cluster it belonged too. You'd obviously want to update the clustering periodically if your data is at all dynamic. I don't know if you could do that with a stored procedure & trigger, but perhaps.
*The "modification" would be to adjust the length of the computed centroid vectors so they'd be on the surface of the earth. Otherwise you'd end up with a bunch of points with negative altitude (when converted back to LLH).
回答2:
If you're clustering on geographic location, and I can't imagine it being anything else :-), you could store the "cluster ID" in the database along with the lat/long co-ordinates.
What I mean by that is to divide the world map into (for example) a 100x100 matrix (10,000 clusters) and each co-ordinate gets assigned to one of those clusters.
Then, you can detect very close coordinates by selecting those in the same square and moderately close ones by selecting those in adjacent squares.
The size of your squares (and therefore the number of them) will be decided by how accurate you need the clustering to be. Obviously, if you only have a 2x2 matrix, you could get some clustering of co-ordinates that are a long way apart.
Yo will always have the edge cases such as two points close together but in different clusters (one northernmost in its cluster, the other southernmost in its) but you could adjust the cluster size OR post-process the results on the client side.
回答3:
I did a similar thing for a geographic application where I wanted to ensure I could cache point sets easily. My geohashing code looks like this:
def compute_chunk(latitude, longitude)
(floor_lon(longitude) * 0x1000) | floor_lat(latitude)
end
def floor_lon(longitude)
((longitude + 180) * 10).to_i
end
def floor_lat(latitude)
((latitude + 90) * 10).to_i
end
Everything got really easy from there. I had some code for grabbing all of the chunks from a given point to a given radius that would translate into a single memcache multiget (and some code to backfill that when it was missing).
回答4:
For movielandmarks.com I used the clustering code from Mike Purvis, one of the authors of Beginning Google Maps Applications with PHP and AJAX. It builds trees of clusters/points for different zoom levels using PHP and MySQL, storing it in the database so that recall is very fast. Some of it may be useful to you even if you are using a different database.
回答5:
Why not testing multiple approaches?
- translate the weka library in .NET CLI with IKVM.NET
- add an assembly resulted from your code and weka.dll (use ilmerge) into your database
Make some tests, that is. No specific clustering works better than anyone else.
回答6:
I believe you can use MSSQL's spatial data types. If they are similar to other spatial data types I know, they will store your points in a tree of rectangles, and then you can go to the lower-resolution rectangles to get implicit clusters.