Greetings,
I'm working on an application inspired by the "ZoomingPDFViewer" example that comes with the iOS SDK. At some point I found the following bit of code:
// to handle the interaction between CATiledLayer and high resolution
// screens, we need to manually set the tiling view's
// contentScaleFactor to 1.0. (If we omitted this, it would be 2.0
// on high resolution screens, which would cause the CATiledLayer
// to ask us for tiles of the wrong scales.)
pageContentView.contentScaleFactor = 1.0;
I tried to learn more about contentScaleFactor
and what it does. After reading everything of Apple's documentation that mentioned it, I searched Google and never found a definite answer to what it actually does.
Here are a few things I'm curious about:
It seems that contentScaleFactor
has some kind of effect on the graphics context when a UIView's/CALayer's contents are being drawn. This seems to be relevant to high resolution displays (like the Retina Display). What kind of effect does contentScaleFactor
really have and on what?
When using a UIScrollView
and setting it up to zoom, let's say, my contentView; all subviews of contentView are being scaled, too. How does this work? Which properties does UIScrollView
modify to make even video players become blurry and scale up?
TL;DR: How does UIScrollView's zooming feature work "under the hood"? I want to understand how it works so I can write proper code.
Any hints and explanation is highly appreciated! :)
Coordinates are expressed in points not pixels. contentScaleFactor
defines the relation between point and pixels: if it is 1, points and pixels are the same, but if it is 2 (like retina displays ) it means that every point has two pixels.
In normal drawing, working with points means that you don't have to worry about resolutions: in iphone 3 (scaleFactor 1) and iphone4 (scaleFactor 2 and 2x resolution), you can use the same coordinates and drawing code. However, if your are drawing a image (directly, as a texture...) and just using normal coordinates (points), you can't trust that pixel to point map is 1 to 1. If you do, then every pixel of the image will correspond to 1 point but 4 pixels if scaleFactor is 2 (2 in x direction, 2 in y) so images could became a bit blurred
Working with CATiledLayer
you can have some unexpected results with scalefactor 2. I guess that having the UIView
a contentScaleFactor==2
and the layer a contentScale==2
confuse the system and sometimes multiplies the scale. Maybe something similar happens with Scrollview.
Hope this clarifies it a bit
Apple has a section about this on its "Supporting High-Resolution Screens" page in the iOS dev documentations.
The page says:
Updating Your Custom Drawing Code
When you do any custom drawing in your application, most of the time
you should not need to care about the resolution of the underlying
screen. The native drawing technologies automatically ensure that the
coordinates you specify in the logical coordinate space map correctly
to pixels on the underlying screen. Sometimes, however, you might need
to know what the current scale factor is in order to render your
content correctly. For those situations, UIKit, Core Animation, and
other system frameworks provide the help you need to do your drawing
correctly.
Creating High-Resolution Bitmap Images Programmatically If you
currently use the UIGraphicsBeginImageContext function to create
bitmaps, you may want to adjust your code to take scale factors into
account. The UIGraphicsBeginImageContext function always creates
images with a scale factor of 1.0. If the underlying device has a
high-resolution screen, an image created with this function might not
appear as smooth when rendered. To create an image with a scale factor
other than 1.0, use the UIGraphicsBeginImageContextWithOptions
instead. The process for using this function is the same as for the
UIGraphicsBeginImageContext function:
- Call UIGraphicsBeginImageContextWithOptions to create a bitmap
context (with the appropriate scale factor) and push it on the
graphics stack.
- Use UIKit or Core Graphics routines to draw the content of the
image.
- Call UIGraphicsGetImageFromCurrentImageContext to get the bitmap’s
contents.
- Call UIGraphicsEndImageContext to pop the context from the stack.
For example, the following code snippet
creates a bitmap that is 200 x 200 pixels. (The number of pixels is
determined by multiplying the size of the image by the scale
factor.)
UIGraphicsBeginImageContextWithOptions(CGSizeMake(100.0,100.0), NO, 2.0);
See it here: Supporting High-Resolution Screens