Dataframe.resample() works only with timeseries data. I cannot find a way of getting every nth row from non-timeseries data. What is the best method?
问题:
回答1:
I'd use iloc
, which takes a row/column slice, both based on integer position and following normal python syntax.
df.iloc[::5, :]
回答2:
Though @chrisb's accepted answer does answer the question, I would like to add to it the following.
A simple method I use to get the nth
data or drop the nth
row is the following:
df1 = df[df.index % 3 != 0] # Excludes every 3rd row starting from 0
df2 = df[df.index % 3 == 0] # Selects every 3rd raw starting from 0
This arithmetic based sampling has the ability to enable even more complex row-selections.
This assumes, of course, that you have an index
column of ordered, consecutive, integers starting at 0.
回答3:
I had a similar requirement, but I wanted the n'th item in a particular group. This is how I solved it.
groups = data.groupby(['group_key'])
selection = groups['index_col'].apply(lambda x: x % 3 == 0)
subset = data[selection]
回答4:
There is an even simpler solution to the accepted answer that involves directly invoking df.__getitem__
.
df = pd.DataFrame('x', index=range(5), columns=list('abc'))
df
a b c
0 x x x
1 x x x
2 x x x
3 x x x
4 x x x
For example, to get every 2 rows, you can do
df[::2]
a b c
0 x x x
2 x x x
4 x x x
There's also GroupBy.first
/GroupBy.head
, you group on the index:
df.index // 2
# Int64Index([0, 0, 1, 1, 2], dtype='int64')
df.groupby(df.index // 2).first()
# Alternatively,
# df.groupby(df.index // 2).head(1)
a b c
0 x x x
1 x x x
2 x x x
The index is floor-divved by the stride (2, in this case). If the index is non-numeric, instead do
# df.groupby(np.arange(len(df)) // 2).first()
df.groupby(pd.RangeIndex(len(df)) // 2).first()
a b c
0 x x x
1 x x x
2 x x x