Large public datasets? [closed]

2019-01-29 15:11发布

问题:

I am looking for some large public datasets, in particular:

  1. Large sample web server logs that have been anonymized.

  2. Datasets used for database performance benchmarking.

Any other links to large public datasets would be appreciated. I already know about Amazon's public datasets at: http://aws.amazon.com/publicdatasets/

回答1:

1. Large sample web server logs that have been anonymized.

These work to start with:

  • UCI Machine Learning Repository
    • Anonymous Microsoft Web Data
    • MSNBC.com Anonymous Web Data
    • Syskill and Webert Web Page Ratings

There are many, many more data sets available than these (see the gamut of other answers), but this is the lowest hanging fruit that meets your original criteria. As a bonus, they have a contact link if you have specific needs they may know of.

2. Datasets used for database performance benchmarking.

This sounds like a misnomer, because you're asking for empirical data sets that describe well-defined algorithmic problems. Specifically, it sounds like you're trying to find sets of data that you can use to test and benchmark various database systems in real time, using well-defined, normalized relational data that can be used as a set of test cases for determining the most efficient solution that meets your needs.

I don't agree with this approach. Instead of finding a litany of database systems and their canned implementations, it's far better to explore the algorithmic guarantees of these systems as your first port of call. Once you've determined the algorithmic constraints that meet your needs, you can hone in on a set of canned solutions that you can benchmark on efficiency of, for example, indexing, sorting, searching, insertion, deletion, and retrieval.

Wikipedia provides a terse article on database testing concepts that you can use to determine and write test cases for benchmarking performance. For example, you might use an agnostic data access interface like JDBC and JDBC Benchmark to determine the relative timings of each operation. From here, you can hone in on a correct solution.

In short, go to the research first for determining database guarantees. Once a set of candidate solutions has been identified, you can select amongst those by testing (or otherwise determining) the constant time performance of each desired operation.



回答2:

Based on Quora answers and my personal collections in my studies, an awesome-public-datasets repository was created and updated lively on GitHub:

Below is a snapshot version of this list. For a newest list, please visit Github:

This list of public data sources are collected and tidied from blogs, answers, and user responses. Most of the data sets listed below are free, however, some are not. This list comes from https://github.com/caesar0301/awesome-public-datasets.

Climate

  • Australian Weather: http://www.bom.gov.au/climate/dwo/
  • Climate data: http://www.cru.uea.ac.uk/cru/data/temperature/#datter and ftp://ftp.cmdl.noaa.gov/
  • Global climate data since 1929: http://www.tutiempo.net/en/Climate
  • NOAA Bering Sea Climate: http://www.beringclimate.noaa.gov/
  • NOAA climate datasets: http://ncdc.noaa.gov/data-access/quick-links
  • WU Historical Weather Worldwide: http://www.wunderground.com/history/index.html

Economics

  • American Economic Ass. (AEA): http://www.aeaweb.org/RFE/toc.php?show=complete
  • EconData (UMD): http://inforumweb.umd.edu/econdata/econdata.html
  • Internet Product Code Database: http://www.upcdatabase.com/
  • World bank: http://data.worldbank.org/indicator

Finance

  • CBOE Futures Exchange: http://cfe.cboe.com/Data/
  • Google Finance: https://www.google.com/finance
  • Google Trends: http://www.google.com/trends?q=google&ctab=0&geo=all&date=all&sort=0
  • NASDAQ: https://data.nasdaq.com/
  • OANDA: http://www.oanda.com/
  • OSU Financial data: http://fisher.osu.edu/fin/osudata.htm
  • Quandl: http://www.quandl.com/
  • St Louis Federal: http://research.stlouisfed.org/fred2/
  • Yahoo Finance: http://finance.yahoo.com/

Biology

  • CRCNS: http://crcns.org/data-sets
  • Gene Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/
  • Human Microbiome Project: http://www.hmpdacc.org/reference_genomes/reference_genomes.php
  • MIT Cancer Genomics Data: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
  • NIH Microarray data: ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE6532/
  • Protein structure: http://www.infobiotic.net/PSPbenchmarks/
  • Public Gene Data: http://www.pubgene.org/
  • Stanford Microarray Data: http://smd.stanford.edu/
  • UniGene: http://www.ncbi.nlm.nih.gov/unigene

Physics

  • NASA: http://nssdc.gsfc.nasa.gov/nssdc/obtaining_data.html

Healthcare

  • EHDP Large Health Data Sets: http://www.ehdp.com/vitalnet/datasets.htm
  • Gapminder: http://www.gapminder.org/data/
  • Medicare Data File: http://go.cms.gov/19xxPN4

GeoSpace

  • EOSDIS: http://sedac.ciesin.columbia.edu/data/sets/browse
  • Factual Global Location Data: http://www.factual.com/
  • Geo Spatial Data: http://geodacenter.asu.edu/datalist/

Transportation

  • Airlines Data (2009 ASA Challenge): http://stat-computing.org/dataexpo/2009/the-data.html
  • Airports and their locations: http://www.infochimps.com/datasets/airports-and-their-locations
  • Bike Share Data Systems: https://github.com/BetaNYC/Bike-Share-Data-Best-Practices/wiki/Bike-Share-Data-Systems
  • Edge data for US domestic flights 1990 to 2009: http://data.memect.com/?p=229
  • Half a million Hubway rides: http://hubwaydatachallenge.org/trip-history-data/
  • NYC Taxi Trip Data 2013 (FOIA/FOIL): https://archive.org/details/nycTaxiTripData2013
  • OpenFlights (airport, airline and route data): http://openflights.org/data.html
  • RITA Airline On-Time Performance Data: http://www.transtats.bts.gov/Tables.asp?DB_ID=120
  • RITA transport data collection: http://www.transtats.bts.gov/DataIndex.asp
  • Transport for London: http://www.tfl.gov.uk/info-for/open-data-users/our-feeds
  • U.S. Freight Analysis Framework: http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm

Government

  • Archive-it: : https://www.archive-it.org/explore?show=Collections
  • Australia: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3301.02009?OpenDocument
  • Canada: http://www.data.gc.ca/default.asp?lang=En&n=5BCD274E-1
  • Chicago: https://data.cityofchicago.org/
  • FDA: https://open.fda.gov/index.html
  • Fed Stats: http://www.fedstats.gov/cgi-bin/A2Z.cgi
  • Guardian world governments: http://www.guardian.co.uk/world-government-data
  • HUD: http://www.huduser.org/portal/datasets/pdrdatas.html
  • London Datastore, U.K: http://data.london.gov.uk/dataset
  • New Zealand: http://www.stats.govt.nz/browse_for_stats.aspx
  • NYC betanyc: http://betanyc.us/
  • NYC Open Data: http://nycplatform.socrata.com/
  • OECD: http://www.oecd.org/document/0,3746,en_2649_201185_46462759_1_1_1_1,00.html
  • RITA: http://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp
  • San Francisco Data sets: http://datasf.org/
  • The World Bank: http://wdronline.worldbank.org/
  • U.K. Government Data: http://data.gov.uk/data
  • U.S. Census Bureau: http://www.census.gov/data.html
  • U.S. Federal Government Agencies: http://www.data.gov/metric
  • U.S. Federal Government Data Catalog: http://catalog.data.gov/dataset
  • U.S. Open Government: http://www.data.gov/open-gov/
  • UK 2011 Census Open Atlas Project: http://www.alex-singleton.com/2011-census-open-atlas-project/
  • United Nations: http://data.un.org/
  • US CDC Public Health datasets: http://www.cdc.gov/nchs/data_access/ftp_data.htm

Data Challenges

  • Challenges in Machine Learning: http://www.chalearn.org/
  • ICWSM Data Challenge (since 2009): http://icwsm.cs.umbc.edu/
  • Kaggle Competition Data: http://www.kaggle.com/
  • KDD Cup by Tencent 2012: https://www.kddcup2012.org/
  • Netflix Prize: http://www.netflixprize.com/leaderboard
  • Yelp Dataset Challenge: http://www.yelp.com/dataset_challenge

Machine Learning

  • eBay Online Auctions: http://www.modelingonlineauctions.com/datasets
  • IMDb database: http://www.imdb.com/interfaces
  • Keel Repository: http://sci2s.ugr.es/keel/datasets.php
  • Lending Club Loan Data: https://www.lendingclub.com/info/download-data.action
  • Machine Learning Data Set Repository: http://mldata.org/
  • Million Song Dataset: http://blog.echonest.com/post/3639160982/million-song-dataset
  • More Song Datasets: http://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets
  • MovieLens Data Sets: http://datahub.io/dataset/movielens
  • RDataMining R and Data Mining ebook data: http://www.rdatamining.com/data
  • Registered meteorites on Earth: http://www.analyticbridge.com/profiles/blogs/registered-meteorites-that-has-impacted-on-earth-visualized
  • SF restaurants dataset: http://missionlocal.org/san-francisco-restaurant-health-inspections/
  • UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
  • University of Toronto Delve Datasets: http://www.cs.toronto.edu/~delve/data/datasets.html
  • Yahoo Ratings and Classification Data: http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Natural Language

  • 40 Million Entities in Context: https://code.google.com/p/wiki-links/downloads/list
  • ClueWeb09 FACC: http://lemurproject.org/clueweb09/FACC1/
  • ClueWeb12 FACC: http://lemurproject.org/clueweb12/FACC1/
  • Flickr personal taxonomies: http://www.isi.edu/~lerman/downloads/flickr/flickr_taxonomies.html
  • Google Books Ngrams: http://aws.amazon.com/datasets/8172056142375670
  • Google Web 5gram, 2006 (1T): https://catalog.ldc.upenn.edu/LDC2006T13
  • Gutenberg eBooks List: http://www.gutenberg.org/wiki/Gutenberg:Offline_Catalogs
  • Hansards: http://www.isi.edu/natural-language/download/hansard/
  • Machine Translation: http://statmt.org/wmt11/translation-task.html#download
  • SMS Spam Collection: http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
  • USENET corpus: http://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html
  • WordNet: http://wordnet.princeton.edu/wordnet/download/

Image Processing

  • 2GB of photos of cats: http://bit.do/UJZZ
  • Face Recognition Benchmark: http://www.face-rec.org/databases/
  • ImageNet: http://www.image-net.org/

Time Series

  • Time Series data Library: https://datamarket.com/data/list/?q=provider:tsdl
  • UC Riverside Time Series: http://www.cs.ucr.edu/~eamonn/time_series_data/

Social Sciences

  • China Hotel Checkin/out data: http://www.360doc.com/content/13/1105/13/7863900_326788919.shtml
  • CMU Enron Email: http://www.cs.cmu.edu/~enron/
  • Facebook Social Networks (since 2007): http://law.di.unimi.it/datasets.php
  • Facebook100 (2005): https://archive.org/details/oxford-2005-facebook-matrix
  • Foursquare (2010,2011): http://www.public.asu.edu/~hgao16/dataset.html
  • Foursquare (UMN/Sarwat, 2013): https://archive.org/details/201309_foursquare_dataset_umn
  • General Social Survey (GSS): http://www3.norc.org/GSS+Website/
  • GetGlue (users rating TV shows): http://getglue-data.s3.amazonaws.com/getglue_sample.tar.gz
  • GitHub Archive: http://www.githubarchive.org/
  • ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/index.jsp
  • Mobile Social Networks (UMASS): https://kdl.cs.umass.edu/display/public/Mobile+Social+Networks
  • PewResearch Internet Project: http://www.pewinternet.org/datasets/pages/2/
  • Social Networking: http://www.cs.cmu.edu/~jelsas/data/ancestry.com/
  • SourceForge Graph: http://www.nd.edu/~oss/Data/data.html
  • Titanic Survival Data Set: https://github.com/caesar0301/awesome-public-datasets/blob/master/Datasets/titanic.csv.zip
  • Twitter Graph: http://an.kaist.ac.kr/traces/WWW2010.html
  • UC Berkeley's D-Lab Achive: http://ucdata.berkeley.edu/
  • UCLA Social Sciences Data Archive: http://dataarchives.ss.ucla.edu/Home.DataPortals.htm
  • UNIMI Social Network Datasets: http://law.di.unimi.it/datasets.php
  • Universities Worldwide: http://univ.cc/
  • UPJOHN for Employment Research: http://www.upjohn.org/erdc/erdc.html
  • Yahoo Graph and Social Data: http://webscope.sandbox.yahoo.com/catalog.php?datatype=g
  • Youtube Graph (2007,2008): http://netsg.cs.sfu.ca/youtubedata/

Complex Networks

  • CrossRef DOI URLs: https://archive.org/details/doi-urls
  • DBLP Citation dataset: https://kdl.cs.umass.edu/display/public/DBLP
  • NBER Patent Citations: http://nber.org/patents/
  • NIST complex networks data collection: http://math.nist.gov/~RPozo/complex_datasets.html
  • Protein-protein interaction network: http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
  • PyPI and Maven Dependency Network: http://ogirardot.wordpress.com/2013/01/31/sharing-pypimaven-dependency-data/
  • Scopus Citation Database: http://www.elsevier.com/online-tools/scopus
  • Stanford GraphBase (Steven Skiena): http://www3.cs.stonybrook.edu/~algorith/implement/graphbase/implement.shtml
  • Stanford Large Network Dataset Collection: http://snap.stanford.edu/data/
  • The Koblenz Network Collection: http://konect.uni-koblenz.de/
  • UCI Network Data Repository: http://networkdata.ics.uci.edu/resources.php
  • UFL sparse matrix collection: http://www.cise.ufl.edu/research/sparse/matrices/
  • UNIMI Large Web Graph: http://law.di.unimi.it/datasets.php
  • WSU Graph Database: http://www.eecs.wsu.edu/mgd/gdb.html

Computer Networks

  • 3.5B Web Pages: http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us
  • 53.5B Web clicks: http://cnets.indiana.edu/groups/nan/webtraffic/click-dataset
  • CAIDA Internet Datasets: http://www.caida.org/data/overview/
  • ClueWeb09: http://lemurproject.org/clueweb09/
  • ClueWeb12: http://lemurproject.org/clueweb12/
  • CommonCrawl Web Data: http://commoncrawl.org/the-data/get-started/
  • Dartmouth CRAWDAD Wireless datasets: http://crawdad.cs.dartmouth.edu/
  • OpenMobileData (MobiPerf): https://console.developers.google.com/storage/openmobiledata_public/
  • UCSD Network Telescope: http://www.caida.org/projects/network_telescope/

Data SEs

  • Academic Torrents: http://academictorrents.com/
  • Datahub.io: http://datahub.io/dataset
  • DataMarket: https://datamarket.com/data/list/?q=all
  • Harvard Dataverse: http://thedata.harvard.edu/dvn/
  • Statista: http://www.statista.com/
  • Freebase: http://www.freebase.com/

Public Doamins

  • Amazon: http://aws.amazon.com/datasets
  • Archive.org Datasets: https://archive.org/details/datasets
  • CMU JASA data archive: http://lib.stat.cmu.edu/jasadata/
  • CMU StatLab collections: http://lib.stat.cmu.edu/datasets/
  • Data360: http://www.data360.org/index.aspx
  • Datamob.org: http://datamob.org/datasets
  • Google: http://www.google.com/publicdata/directory
  • infochimps: http://www.infochimps.com/
  • KDNuggets Data Collections: http://www.kdnuggets.com/datasets/index.html
  • Numbray: http://numbrary.com/
  • RevolutionAnalytics Collection: http://www.revolutionanalytics.com/subscriptions/datasets/
  • Sample R data sets: http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/00Index.html
  • Stats4Stem R data sets: http://www.stats4stem.org/data-sets.html
  • StatSci.org: http://www.statsci.org/datasets.html
  • The Washington Post List: http://www.washingtonpost.com/wp-srv/metro/data/datapost.html
  • UCLA SOCR data collection: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data
  • UFO Reports: http://www.nuforc.org/webreports.html
  • Wikileaks 911 pager intercepts: http://911.wikileaks.org/files/index.html
  • Yahoo Webscope: http://webscope.sandbox.yahoo.com/catalog.php

Complementary Collections

  • DataWrangling: http://www.datawrangling.com/some-datasets-available-on-the-web
  • Inside-r: http://www.inside-r.org/howto/finding-data-internet
  • Quora: http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
  • RS Collection 100+ : http://rs.io/2014/05/29/list-of-data-sets.html
  • StaTrek: http://hsiamin.com/posts/2014/10/23/leveraging-open-data-to-understand-urban-lives/


回答3:

Here are several. Have fun.

http://archive.ics.uci.edu/ml/

http://aws.amazon.com/datasets?_encoding=UTF8&jiveRedirect=1

http://crawdad.org/

http://data.austintexas.gov

http://data.cityofchicago.org

http://data.govloop.com

http://data.gov.uk/

http://data.medicare.gov

http://data.seattle.gov

http://data.sfgov.org

http://data.sunlightlabs.com

https://datamarket.azure.com/

http://ftp.ncbi.nih.gov/

http://gettingpastgo.socrata.com

http://books.google.com/ngrams/

http://linkeddata.org/

http://medihal.archives-ouvertes.fr

http://public.resource.org/

http://rechercheisidore.fr

http://reddit.com/r/datasets

http://timetric.com/public-data/

http://www2.jpl.nasa.gov/srtm

http://www.bls.gov/

http://www.crunchbase.com/

http://www.dartmouthatlas.org/

http://www.data.gov/

http://www.datakc.org

http://www.factual.com/

http://www.freebase.com/

http://www.infochimps.com

http://www.kaggle.com/

http://build.kiva.org/

http://www.imdb.com/interfaces

http://dbpedia.org



回答4:

Just a thought:

  • USGS Geographic Names database
  • USDA PLANTS checklist
  • Any one of the many state GIS repositories e.g. NH's GRANIT


回答5:

Well for the web server logs you could always just generate them for the format you need. If you are going to test code against it etc. it will have to be tailored to the fields you want to store/parse.

For the datasets used for database performance benchmarking, you'll probably want to look at a tool that can generate data for you. Red Gate has a great one for not too much money.



回答6:

Google Fusion Tables has a few.

http://tables.googlelabs.com/



回答7:

Datasets available here as well.



回答8:

Kaggle.com frequently has datamining challenges. The datasets cover a wide range of fienlds: healthcare provider data to credit history information. Perhaps something there is what you're after.



回答9:

http://Quandl.com has over 10 million data sets gleaned from all over the internet. The great thing about this resource is that it gives a single way to access all of the data. The site has a free Excel plug in or there are libraries in R, Python, Ruby, etc.



回答10:

http://www.quora.com/Data/Where-can-I-get-large-datasets-open-to-the-public



回答11:

I am surprised no one mentioned Google N-Grams. More on N-Grams at http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html



回答12:

Perhaps some databases used as training sets for face recognition algorithms: face-rec.org



回答13:

Well, this one is new and there is a challenge behind it:

Million song dataset challenge