My dataset contains 400 images 32x32x3 and the labels contain float number (-1,1). Example:
faceCroppedImages/img1.jpg 0
faceCroppedImages/img2.jpg 0.0128
faceCroppedImages/img3.jpg 0.0128
faceCroppedImages/img4.jpg 0.0128
faceCroppedImages/img22.jpg 0.0128
faceCroppedImages/img23.jpg 0.0085
faceCroppedImages/img24.jpg 0.0077
faceCroppedImages/img25.jpg 0.0077
faceCroppedImages/img293.jpg -0.023
faceCroppedImages/img294.jpg -0.023
faceCroppedImages/img295.jpg -0.0204
faceCroppedImages/img296.jpg -0.0179
faceCroppedImages/img297.jpg -0.017
faceCroppedImages/img298.jpg -0.0128
My 'solver.prototxt'
is:
net: "train_test_hdf5.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.003
momentum: 0.9
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "lenet_hdf5"
solver_mode: CPU
and 'train_test_hdf5.prototxt'
is:
name: "MSE regression"
layer{
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "train_hdf5file.txt"
batch_size: 64
shuffle: true
}
include: { phase: TRAIN }
}
layer{
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "test_hdf5file.txt"
batch_size: 128
}
include: { phase: TEST }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param { lr_mult: 1 }
param { lr_mult: 2 }
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "dropout1"
type: "Dropout"
bottom: "pool1"
top: "pool1"
dropout_param {
dropout_ratio: 0.1
}
}
layer{
name: "fc1"
type: "InnerProduct"
bottom: "pool1"
top: "fc1"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "dropout2"
type: "Dropout"
bottom: "fc1"
top: "fc1"
dropout_param {
dropout_ratio: 0.5
}
}
layer{
name: "fc2"
type: "InnerProduct"
bottom: "fc1"
top: "fc2"
param { lr_mult: 1 decay_mult: 1 }
param { lr_mult: 2 decay_mult: 0 }
inner_product_param {
num_output: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy1"
type: "Accuracy"
bottom: "fc2"
bottom: "label"
top: "accuracy1"
include {
phase: TEST
}
}
layer{
name: "loss"
type: "EuclideanLoss"
bottom: "fc2"
bottom: "label"
top: "loss"
}
However when I'm testing the data the accuracy is always 1:
I tried using integer labels my multiplying my current labels by 1000, but I'm getting the nan error:
Can you please tell me where I'm doing wrong? I'm a beginner in caffe and neural networks. Any suggestions will be valuable. TIA.