I have been trying to solve this for days, and although I have found a similar problem here How can i vectorize list using sklearn DictVectorizer, the solution is overly simplified.
I would like to fit some features into a logistic regression model to predict 'chinese' or 'non-chinese'. I have a raw_name which I will extract to get two features 1) is just the last name, and 2) is a list of substring of the last name, for example, 'Chan' will give ['ch', 'ha', 'an']. But it seems Dictvectorizer doesn't take list type as part of the dictionary. From the link above, I try to create a function list_to_dict, and successfully, return some dict elements,
{'substring=co': True, 'substring=or': True, 'substring=rn': True, 'substring=ns': True}
but I have no idea how to incorporate that in the my_dict = ... before applying the dictvectorizer.
# coding=utf-8
import pandas as pd
from pandas import DataFrame, Series
import numpy as np
import nltk
import re
import random
from random import randint
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction import DictVectorizer
lr = LogisticRegression()
dv = DictVectorizer()
# Get csv file into data frame
data = pd.read_csv("V2-1_2000Records_Processed_SEP2015.csv", header=0, encoding="utf-8")
df = DataFrame(data)
# Pandas data frame shuffling
df_shuffled = df.iloc[np.random.permutation(len(df))]
df_shuffled.reset_index(drop=True)
# Assign X and y variables
X = df.raw_name.values
y = df.chineseScan.values
# Feature extraction functions
def feature_full_last_name(nameString):
try:
last_name = nameString.rsplit(None, 1)[-1]
if len(last_name) > 1: # not accept name with only 1 character
return last_name
else: return None
except: return None
def feature_twoLetters(nameString):
placeHolder = []
try:
for i in range(0, len(nameString)):
x = nameString[i:i+2]
if len(x) == 2:
placeHolder.append(x)
return placeHolder
except: return []
def list_to_dict(substring_list):
try:
substring_dict = {}
for i in substring_list:
substring_dict['substring='+str(i)] = True
return substring_dict
except: return None
list_example = ['co', 'or', 'rn', 'ns']
print list_to_dict(list_example)
# Transform format of X variables, and spit out a numpy array for all features
my_dict = [{'two-letter-substrings': feature_twoLetters(feature_full_last_name(i)),
'last-name': feature_full_last_name(i), 'dummy': 1} for i in X]
print my_dict[3]
Output:
{'substring=co': True, 'substring=or': True, 'substring=rn': True, 'substring=ns': True}
{'dummy': 1, 'two-letter-substrings': [u'co', u'or', u'rn', u'ns'], 'last-name': u'corns'}
Sample data:
Raw_name chineseScan
Jack Anderson non-chinese
Po Lee chinese