I have a function within a Python script that I am calling multiple times (https://github.com/sankhaMukherjee/NNoptExpt/blob/dev/src/lib/NNlib/NNmodel.py): I have simplified the function significantly for this example.
def errorValW(self, X, y, weights):
errVal = None
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
nW = len(self.allW)
W = weights[:nW]
B = weights[nW:]
for i in range(len(W)):
sess.run(tf.assign( self.allW[i], W[i] ))
for i in range(len(B)):
sess.run(tf.assign( self.allB[i], B[i] ))
errVal = sess.run(self.err,
feed_dict = {self.Inp: X, self.Op: y})
return errVal
I am calling this function many times from another function. When I see the program log, It appears that this function keeps taking longer and longer. A partial log is shown:
21:37:12,634 - ... .errorValW ... - Finished the function [errorValW] in 1.477610e+00 seconds
21:37:14,116 - ... .errorValW ... - Finished the function [errorValW] in 1.481470e+00 seconds
21:37:15,608 - ... .errorValW ... - Finished the function [errorValW] in 1.490914e+00 seconds
21:37:17,113 - ... .errorValW ... - Finished the function [errorValW] in 1.504651e+00 seconds
21:37:18,557 - ... .errorValW ... - Finished the function [errorValW] in 1.443876e+00 seconds
21:37:20,183 - ... .errorValW ... - Finished the function [errorValW] in 1.625608e+00 seconds
21:37:21,719 - ... .errorValW ... - Finished the function [errorValW] in 1.534915e+00 seconds
... many lines later
22:59:26,524 - ... .errorValW ... - Finished the function [errorValW] in 9.576592e+00 seconds
22:59:35,991 - ... .errorValW ... - Finished the function [errorValW] in 9.466405e+00 seconds
22:59:45,708 - ... .errorValW ... - Finished the function [errorValW] in 9.716456e+00 seconds
22:59:54,991 - ... .errorValW ... - Finished the function [errorValW] in 9.282923e+00 seconds
23:00:04,407 - ... .errorValW ... - Finished the function [errorValW] in 9.415035e+00 seconds
Has anyone else experienced anything like this?? This is totally baffling to me ...
Edit: this is for reference ...
For reference, the initializer for the class is shown below. I suspect that the graph for the result
variable is progressively increasing in size. I have seen this problem when I try to save models with tf.train.Saver(tf.trainable_variables())
and the size of this file keeps increasing. I am not sure if I am making a mistake in defining the model in any way ...
def __init__(self, inpSize, opSize, layers, activations):
self.inpSize = inpSize
self.Inp = tf.placeholder(dtype=tf.float32, shape=inpSize, name='Inp')
self.Op = tf.placeholder(dtype=tf.float32, shape=opSize, name='Op')
self.allW = []
self.allB = []
self.result = None
prevSize = inpSize[0]
for i, l in enumerate(layers):
tempW = tf.Variable( 0.1*(np.random.rand(l, prevSize) - 0.5), dtype=tf.float32, name='W_{}'.format(i) )
tempB = tf.Variable( 0, dtype=tf.float32, name='B_{}'.format(i) )
self.allW.append( tempW )
self.allB.append( tempB )
if i == 0:
self.result = tf.matmul( tempW, self.Inp ) + tempB
else:
self.result = tf.matmul( tempW, self.result ) + tempB
prevSize = l
if activations[i] is not None:
self.result = activations[i]( self.result )
self.err = tf.sqrt(tf.reduce_mean((self.Op - self.result)**2))
return