Is there a way to check if I touched the object on the screen ? As I understand the HitResult class allows me to check if I touched the recognized and maped surface. But I want to check this I touched the object that is set on that surface.
问题:
回答1:
ARCore doesn't really have a concept of an object, so we can't directly provide that. I suggest looking at ray-sphere tests for a starting point.
However, I can help with getting the ray itself (to be added to HelloArActivity
):
/**
* Returns a world coordinate frame ray for a screen point. The ray is
* defined using a 6-element float array containing the head location
* followed by a normalized direction vector.
*/
float[] screenPointToWorldRay(float xPx, float yPx, Frame frame) {
float[] points = new float[12]; // {clip query, camera query, camera origin}
// Set up the clip-space coordinates of our query point
// +x is right:
points[0] = 2.0f * xPx / mSurfaceView.getMeasuredWidth() - 1.0f;
// +y is up (android UI Y is down):
points[1] = 1.0f - 2.0f * yPx / mSurfaceView.getMeasuredHeight();
points[2] = 1.0f; // +z is forwards (remember clip, not camera)
points[3] = 1.0f; // w (homogenous coordinates)
float[] matrices = new float[32]; // {proj, inverse proj}
// If you'll be calling this several times per frame factor out
// the next two lines to run when Frame.isDisplayRotationChanged().
mSession.getProjectionMatrix(matrices, 0, 1.0f, 100.0f);
Matrix.invertM(matrices, 16, matrices, 0);
// Transform clip-space point to camera-space.
Matrix.multiplyMV(points, 4, matrices, 16, points, 0);
// points[4,5,6] is now a camera-space vector. Transform to world space to get a point
// along the ray.
float[] out = new float[6];
frame.getPose().transformPoint(points, 4, out, 3);
// use points[8,9,10] as a zero vector to get the ray head position in world space.
frame.getPose().transformPoint(points, 8, out, 0);
// normalize the direction vector:
float dx = out[3] - out[0];
float dy = out[4] - out[1];
float dz = out[5] - out[2];
float scale = 1.0f / (float) Math.sqrt(dx*dx + dy*dy + dz*dz);
out[3] = dx * scale;
out[4] = dy * scale;
out[5] = dz * scale;
return out;
}
If you're calling this several times per frame see the comment about the getProjectionMatrix
and invertM
calls.
回答2:
Apart from Mouse Picking with Ray Casting, cf. Ian's answer, the other commonly used technique is a picking buffer, explained in detail (with C++ code) here
The trick behind 3D picking is very simple. We will attach a running index to each triangle and have the FS output the index of the triangle that the pixel belongs to. The end result is that we get a "color" buffer that doesn't really contain colors. Instead, for each pixel which is covered by some primitive we get the index of this primitive. When the mouse is clicked on the window we will read back that index (according to the location of the mouse) and render the select triangle red. By combining a depth buffer in the process we guarantee that when several primitives are overlapping the same pixel we get the index of the top-most primitive (closest to the camera).
So in a nutshell:
- Every object's draw method needs an ongoing index and a boolean for whether this draw renders the pixel buffer or not.
- The render method converts the index into a grayscale color and the scene is rendered
- After the whole rendering is done, retrieve the pixel color at the touch position
GL11.glReadPixels(x, y, /*the x and y of the pixel you want the colour of*/)
. Then translate the color back to an index and the index back to an object. Voilà, you have your clicked object.
To be fair, for a mobile usecase you should probably read a 10x10 rectangle, iterate trough it and pick the first found non-background color - because touches are never that precise.
This approach works independently of the complexity of your objects