In the MIPS ISA, there's a zero register ($r0
) which always gives a value of zero. This allows the processor to:
- Any instruction which produces result that is to be discarded can direct its target to this register
- To be a source of
0
It is said in this source that this improved the speed of the CPU. How does it improve performance? And what are the reasons why not all ISA adopt this zero register?
$r0 is not general purpose. It is hardwired to 0. No matter what you
do to this register, it always has a value of 0. You might wonder why
such a register is needed in MIPS.
The designers of MIPS used benchmarks (programs used to determine the
performance of a CPU), which convinced them that having a register
hardwired to 0 would improve the performance (speed) of the CPU as
opposed to not having it. Not everyone agrees a register hardwired to
0 is essential, so not all ISAs have a zero register.
There's a few potential ways that this can improve performance; it's not clear which ones apply to that particular processor, but I've listed them roughly in order from most to least likely.
- It avoids spurious pipeline stalls. Without an explicit zero register, it's necessary to take a register, zero it out, and use its value. This means that the zero-using operation is dependent on the zeroing operation, and (depending on how powerful the pipeline forwarding system is) possibly on the zeroed register's previous value. Architectures like x86, which have quite small register files and basically virtualize their registers to keep that from causing problems, have extremely powerful hazard analysis tools. The same is not generally true of RISC processors.
- Certain operations may be more pipelineable if they can avoid a register read. If an explicit zero register is used, the fact that the operand will be zero is known at the instruction decode stage, rather than later on in the register fetch stage. Thus, the register read stage can be skipped.
- Similarly, the ability to explicitly discard results avoids the need for a register write stage.
- Certain operations may generate simpler microcode when one of their operands is known to be zero, or when the result is known to be discarded.
- An explicit zero register takes some pressure off the compiler's optimizer, as it doesn't need to be as careful with its register assignment (no need to identify a register which won't cause a stall on read or write).
For each of your items, here's an answer.
- Consider instructions that compulsory take a register for output, where you want to discard this output. Normally, you'd have to make sure that you have a free register available, and if not, push some of your current registers onto the stack, which is a costly operation. Evidently, it happens a lot that the output of operations is discarded, and the easiest way to deal with this is to have a 'unused' register available.
- Now that we have such an unused register, why not use it? It happens a lot that you want to zero-initialize something or compare something to zero. The long way is to first write zero to that register (which requires an extra instruction and the literal for zero in your machine code, which may be of the form
0x00000000
which is rather long) and then use it. So, one instruction shaved off and a little bit of your program size as well.
These optimizations may seem a bit trivial and may raise the question 'how much does that actually improve anything?' The answer here is that the operations described above are apparently used a lot on your MIPS processor.
The concept of a zero register is not new. I first encountered it on a CDC 6600 mainframe, which dates back to the mid-to-late 1960's. In some ways it was one of the first RISC processors, and was the world's fastest computer for 5 years. In that architecture, the "B0" register was hardwired to always be zero. http://en.wikipedia.org/wiki/CDC_6600
The benefit of such a register is primarily that it simplified the instruction set. When the decoding and orchestration of simple and regular instruction sets can be implemented without microcode, it increases performance. In addition, for the 6600 like most LSI chips today, the time spent for a signal to travel the length a "wire" becomes on of the key factors in execution speed, and keeping the instruction set simple (and avoiding microcode) allows less transistors, and results in shorter circuit paths.