I want to go from something like this:
1> a = matrix(c(1,4,2,5,2,5,2,1,4,4,3,2,1,6,7,4),4)
1> a
[,1] [,2] [,3] [,4]
[1,] 1 2 4 1
[2,] 4 5 4 6
[3,] 2 2 3 7
[4,] 5 1 2 4
To something like this:
[,1] [,2]
[1,] 12 15
[2,] 10 16
...without using for-loops, plyr, or otherwise without looping. Possible? I'm trying to shrink a geographic lat/long dataset from 5 arc-minutes to half-degree, and I've got an ascii grid. A little function where I specify blocksize would be great. I've got hundreds of such files, so things that allow me to do it quickly without parallelization/supercomputers would be much appreciated.
You can use matrix multiplication for this.
# Computation matrix:
mat <- function(n, r) {
suppressWarnings(matrix(c(rep(1, r), rep(0, n)), n, n/r))
}
Square-matrix example, uses a matrix and its transpose on each side of a
:
# Reduce a 4x4 matrix by a factor of 2:
x <- mat(4, 2)
x
## [,1] [,2]
## [1,] 1 0
## [2,] 1 0
## [3,] 0 1
## [4,] 0 1
t(x) %*% a %*% x
## [,1] [,2]
## [1,] 12 15
## [2,] 10 16
Non-square example:
b <- matrix(1:24, 4 ,6)
t(mat(4, 2)) %*% b %*% mat(6, 2)
## [,1] [,2] [,3]
## [1,] 14 46 78
## [2,] 22 54 86
tapply(a, list((row(a) + 1L) %/% 2L, (col(a) + 1L) %/% 2L), sum)
# 1 2
# 1 12 15
# 2 10 16
I used 1L
and 2L
instead of 1
and 2
so indices remain integers (as opposed to numerics) and it should run faster that way.
I guess that might help you, but still it uses sapply which can be considered as loop-ish tool.
a <- matrix(c(1,4,2,5,2,5,2,1,4,4,3,2,1,6,7,4),4)
block.step <- 2
res <- sapply(seq(1, nrow(a), by=block.step), function(x)
sapply(seq(1, nrow(a), by=block.step), function(y)
sum(a[x:(x+block.step-1), y:(y+block.step-1)])
)
)
res
Is it anyhow helpful ?