I am trying to filter an RDD based like below:
spark_df = sc.createDataFrame(pandas_df)
spark_df.filter(lambda r: str(r['target']).startswith('good'))
spark_df.take(5)
But got the following errors:
TypeErrorTraceback (most recent call last)
<ipython-input-8-86cfb363dd8b> in <module>()
1 spark_df = sc.createDataFrame(pandas_df)
----> 2 spark_df.filter(lambda r: str(r['target']).startswith('good'))
3 spark_df.take(5)
/usr/local/spark-latest/python/pyspark/sql/dataframe.py in filter(self, condition)
904 jdf = self._jdf.filter(condition._jc)
905 else:
--> 906 raise TypeError("condition should be string or Column")
907 return DataFrame(jdf, self.sql_ctx)
908
TypeError: condition should be string or Column
Any idea what I missed? Thank you!
DataFrame.filter
, which is an alias for DataFrame.where
, expects a SQL expression expressed either as a Column
:
spark_df.filter(col("target").like("good%"))
or equivalent SQL string:
spark_df.filter("target LIKE 'good%'")
I believe you're trying here to use RDD.filter
which is completely different method:
spark_df.rdd.filter(lambda r: r['target'].startswith('good'))
and does not benefit from SQL optimizations.
I have been through this and have settled to using a UDF:
from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType
filtered_df = spark_df.filter(udf(lambda target: target.startswith('good'),
BooleanType())(spark_df.target))
More readable would be to use a normal function definition instead of the lambda
convert the dataframe into rdd.
spark_df = sc.createDataFrame(pandas_df)
spark_df.rdd.filter(lambda r: str(r['target']).startswith('good'))
spark_df.take(5)
I think it may work!