微积分是人类历史上的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5000首歌曲装进口袋里。微积分对当今和未来的科技发展有怎样的影响?尤其是会怎样影响日益深入的各类复杂系统研究?著名数学家、小世界网络模型提出者史蒂夫·斯托加茨,在他的新书《微积分的力量》中,梳理了微积分发展的历史脉络,并展望了微积分方法与非线性动力学在多个交叉领域的应用前景。本文摘自《微积分的力量》第11章《微积分的未来》。本章的标题(微积分的未来)可能会让那些认为微积分是明日黄花的人感到惊讶。它怎么会有未来呢?它现在已经结束了,不是吗?在数学圈,你常会吃惊地听到类似的话。根据这种说法,得益于牛顿和莱布尼茨取得的突破,微积分轰轰烈烈地开始发展。他们的发现在18世纪激发了人们淘金热般的心态,有趣且近乎疯狂的探索活动成为这一时期的标志性特征,无穷这个“石巨人”也像脱缰的野马般肆意狂奔。数学家由此收获了惊人的成果,但谬论和混乱也随之而来。所以,19世纪的那几代数学家表现得更加严谨。他们把“石巨人”赶回了笼中,消除了微积分中的无穷大和无穷小,巩固了这个学科的基础,最终阐明了极限、导数、积分和实数的真正含义。到20世纪前后,他们的清理工作画上了句号。
在我看来,这种关于微积分的看法太狭隘了。微积分不只是牛顿、莱布尼茨及其继任者的研究成果,它开始的时间还要早得多,如今依然在壮大。对我来说,微积分可以由它的信条来定义:在解决关于任意连续体的难题时,先把它切分成无穷多个部分,然后一一求解,最后通过把各个部分的答案组合起来去解决原始的难题。我把这个信条称作无穷原则。无穷原则从一开始就存在:它在阿基米德关于曲线形状的著作中,它在科学革命中,它在牛顿的世界体系中,如今它在我们的家中、工作中和汽车里。它让GPS、手机、激光和微波炉的发明成为可能。美国联邦调查局用它压缩了数百万份指纹文件,阿兰·科马克用它创建了CT 扫描理论,他们都通过重组简单部分(子波之于指纹文件,正弦波之于CT 理论)的方法解决了难题。从这个角度看,微积分是用于研究任何事物——任何模式,任何曲线,任何运动,任何自然过程、系统或现象——的想法与方法的庞杂集合,这些事物的变化平稳而连续,符合无穷原则。该定义的范畴远远超出了牛顿和莱布尼茨的微积分,并囊括了它的子孙后代:多变量微积分,常微分方程,偏微分方程,傅里叶分析,复分析,以及高等数学中涉及极限、导数和积分的所有其他分支。由此可见,微积分还没有完结,它和以前一样求知若渴。但我属于少数派,实际上,只有我一个人持这种观点。我数学系的同事并不认为上述一切都是微积分,他们的理由很充分:这太荒谬了。课程体系中有一半的课不得不重新命名,除了微积分1、微积分2和微积分3以外,还有微积分4直到微积分38,让人不明所以。于是,我们给微积分的每个分支都取了不同的名字,并模糊了它们之间的连续性。我们把微积分切分成可供使用的最小部分,这种做法虽然有些讽刺,但或许很恰当,因为微积分本身的信条就是把连续的事物切分成多个部分,使它们变得更易于理解。需要明确的一点是,我并不反对所有不同的课程名称。我想说的是,这种切分可能会误导我们,让我们忘记那些课程本就是微积分的一部分。我写作本书的目标是,将微积分作为一个整体呈现在你们面前,让你们感受它的美、统一和壮观。那么,微积分会拥有什么样的未来呢?就像人们说的那样,预测总是很难,尤其是对未来的预测。但我认为,我们可以大胆地假设,未来几年围绕微积分可能有几个重要趋势,包括:• 微积分在社会科学、音乐、艺术和人文领域的新应用;
• 微积分与计算机(包括人工智能)之间不断演化的合作关系;我们需要探讨的内容有很多,与其对这里提到的每个主题都说上几句,不如专注于其中几个问题。在简要地介绍DNA(脱氧核糖核酸)的微分几何(曲线之谜与生命的奥秘在此相遇)之后,我们将研究一些能让你获得哲学启发的案例,其中包括混沌、复杂性理论,以及计算机和人工智能的崛起带来的洞察力及预测方面的挑战。然而,为了弄明白这些案例,我们需要回顾一下非线性动力学的基本原理,这有助于我们更好地理解接下来将要面临的挑战。传统上,微积分一直应用于像物理学、天文学和化学这样的“硬” 科学。但近几十年来,它进入了生物学和医学领域,在流行病学、种群生物学、神经科学和医学成像等方面发挥着作用。在本书中,我们已经看到了不少数学生物学的例子,比如,利用微积分预测面部手术的结果,为HIV 与免疫系统的战斗过程建模,等等。但所有这些例子都与变化之谜(关于微积分的最新困扰)的某个方面有关。相比之下,下面这个例子来自古老的曲线之谜,一个关于DNA 的三维路径的谜题为它赋予了新的生命。这个谜题与DNA在细胞中的“打包”方式有关,DNA是一种超长分子,包含了一个人成长发育所需的全部遗传信息。在你的大约10万亿个细胞中,每个都含有约2米长的DNA。如果将它们首尾相连,那么DNA可以在地球和太阳之间往返几十次。不过,怀疑论者可能会辩称,这种比较并不像听上去那么令人印象深刻,它只是反映了我们每个人都有很多细胞。而与DNA所在细胞的细胞核比大小,或许更能说明问题。一个典型的细胞核的直径约为5 微米,它是细胞内DNA 长度的40万分之一, 这个压缩系数相当于把20 英里长的绳子塞到一个网球里。此外,DNA也不能被随意地塞入细胞核。它绝对不能缠绕在一起, 而必须以有序的方式打包,这样DNA才能被酶读取,并被翻译成细胞维持生命活动所需的蛋白质。有序的打包方式还有一个重要作用,那就是当细胞分裂时DNA可以被整齐地复制。进化用线轴解决了打包问题,当我们需要存放一根很长的线时也会采取相同的方法。细胞中的DNA缠绕在分子线轴上,这些线轴由一种叫作组蛋白的特殊蛋白质组成。为了实现进一步压缩,线轴会像项链上的珠子一样首尾相连,然后这条“项链”会盘绕成绳索状纤维,这些纤维本身又会盘绕成染色体。最终,通过重重盘绕,DNA被压缩成足以放入狭窄细胞核的大小。但线轴并不是大自然解决打包问题的原始解决方案。地球上最早的生物是没有细胞核和染色体的单细胞生物,就像今天的细菌和病毒一样,它们也没有线轴。在这种情况下,遗传物质是通过一种基于几何学和弹性的机制来压缩的。想象一下,你拉紧一条橡皮筋,用手指夹住它的一端,并从另一端扭转它。刚开始,橡皮筋的每次转动都会产生一个扭结。扭结不断增加,当累积的扭转超过临界值时,橡皮筋不再保持绷直状态,而会突然弯曲并盘绕在自己身上,仿佛在痛苦地扭动。最终,橡皮筋聚成一团,实现了压缩。DNA也是这样做的。
这种现象被称为超螺旋化,它普遍存在于DNA的环状结构中。尽管我们倾向于把DNA描绘成两端开放的直螺旋,但在许多情况下,它会自我闭合成一个环。当这种现象发生时,就好比解开你的安全带,把它扭曲几圈再扣上一样。此后安全带的扭曲次数就不变了——它被锁定了。在不解开安全带的前提下,如果你试图在某一处扭曲它,其他地方就会形成反向扭曲来抵消这种操作。其中,有某个守恒定律在起作用。当你把花园用的软管盘绕成好几圈堆在地上时,也会发生同样的事情。而当你试图把软管直直地拉出来时,它会在你的手里扭曲。就这样,盘绕转变成扭曲。这种转换也可以反向进行,即从扭曲变为缠绕,就像橡皮筋在扭曲时发生了缠绕一样。原始生物的DNA正是利用了这种缠绕作用, 某些酶可以切割DNA,扭曲它,再把它闭合起来。当DNA 为了降低其能量而放松扭曲时,守恒定律就会迫使它的超螺旋化程度增强,让它变得更紧凑。这样一来,DNA分子的最终路径不再位于一个平面内,而是在三维空间中缠绕。20世纪70年代初,美国数学家布洛克·富勒率先做出了关于DNA的三维缠绕现象的数学描述。他发明了一个叫作DNA缠绕数的量,用积分和导数推导出它的公式,证明了关于它的某些定理,从而明确了针对螺旋和缠绕的守恒定律。此后,关于DNA的几何学和拓扑学研究成为一个蓬勃发展的产业。数学家已经利用纽结理论和缠结微积分 阐明了某些酶的作用机制,这些酶可以扭曲或切割DNA,或者将结与链引入DNA。由于这些酶改变了DNA的拓扑结构,因此被称为拓扑异构酶。它们可以弄断和再连接DNA 链,对细胞的分裂和生长起到至关重要的作用。经证实,它们是癌症化学治疗药物的有效靶点。尽管其作用机制尚不清楚,但人们认为,这些药物(被称为拓扑异构酶抑制剂)通过阻断拓扑异构酶的作用,可以选择性地损坏癌细胞的DNA,导致癌细胞自杀。这对患者来说是好消息,对肿瘤来说则是坏消息。在将微积分应用于超螺旋DNA时,双螺旋被建模为一条连续曲线。微积分一如既往地喜欢处理连续对象,但事实上,DNA是一群离散的原子,它没有什么地方是真正连续的。但是,为了得到好的逼近,DNA可被看作像理想的橡皮筋一样的连续曲线。这样做的好处是,微积分的两个副产品——弹性理论和微分几何学——可用于计算当DNA受到来自蛋白质、环境及与自身相互作用的力时,它会如何变形。更重要的一点是,微积分延续了它一贯的创造性,将离散对象当作连续体来处理,从而揭示它们的行为。这种模拟尽管是近似的,但却很有用。无论如何,这都是我们唯一的选择。没有连续性假设,就无法使用无穷原则。没有无穷原则,就不会有微积分,也不会有微分几何和弹性理论。我希望,未来我们将看到更多将微积分和连续数学应用于天生离散的生物学“角色”的例子,比如基因、细胞、蛋白质和生物学“大戏” 中的其他“演员”。我们能从连续体近似方法中获取的洞见实在太多了, 以至于不能不用它。除非我们开发出一种新的微积分形式,它可以像传统微积分适用于连续系统那样适用于离散系统,否则无穷原则将在生物的数学建模方面继续指导我们。接下来我们要谈论的两个话题是:非线性动力学的兴起和计算机对微积分的影响。我之所以选择这两个问题,是因为它们的哲学内涵十分有趣。它们可能会永远地改变预测的本质,并开启微积分(更一般地说是科学)的新时代,到那个时候,人类的洞察力或许会开始衰退,但科学本身仍将继续前行。为了阐明我的这句有些许末日警告意味的话是什么意思,我们需要理解预测到底为什么可行,它的经典含义是什么,以及我们的经典观念在过去几十年里,是如何被非线性、混沌和复杂系统研究所取得的发现修正的。19世纪早期,法国数学家和天文学家皮埃尔– 西蒙·拉普拉斯把牛顿的机械宇宙决定论推至它的逻辑极限。拉普拉斯设想了一个全知全能的智慧生物——拉普拉斯妖,它可以追踪宇宙中所有原子的所有位置, 还有作用于它们的所有力。“如果这个智慧生物也能对这些数据进行分析,”他写道,“那就没有什么是不确定的了,未来也会像过去一样呈现在它眼前。”随着20世纪的临近,这种对机械宇宙的极端表述在科学和哲学上似乎都开始站不住脚了。其中一个原因来自微积分,为此我们要感谢索菲·柯瓦列夫斯卡娅。柯瓦列夫斯卡娅出生于1850年,在莫斯科的一个贵族家庭长大。11岁时她发现自己被微积分包围了,她卧室的一面墙上贴满了她父亲年少时记下的微积分课程笔记。柯瓦列夫斯卡娅后来写道, 她“在那面神秘的墙旁度过了童年时光,尝试通过理解其中的每一句话,找出页与页之间的正确顺序”。后来,她成为历史上第一位获得数学博士学位的女性。尽管柯瓦列夫斯卡娅很早就表现出数学方面的天赋,但俄罗斯的法律不准许她上大学。她选择了一段形式婚姻,尽管这在随后的几年里令她心痛,但至少允准她去德国,她卓越的天分给那里的几位教授留下了深刻印象。然而,即使在德国,柯瓦列夫斯卡娅也无法光明正大地去上课,只能私下跟着分析家卡尔·魏尔斯特拉斯学习。在魏尔斯特拉斯的推荐下,柯瓦列夫斯卡娅因为解决了分析学、动力学和偏微分方程方面的几个突出问题而被授予博士学位。她最终成为斯德哥尔摩大学的一名教授,执教8 年后死于流感,终年41岁。2009年,诺贝尔文学奖得主艾丽丝·门罗发表了一篇关于柯瓦列夫斯卡娅的短篇小说《幸福过了头》。柯瓦列夫斯卡娅的关于决定论局限性的见解,源于她对刚体动力学的研究。刚体是针对不能弯曲或变形的物体的一种数学抽象,它的所有点都刚性地连接在一起。陀螺就是一种刚体,它非常坚固,由无穷多个点组成,所以陀螺是比牛顿研究的单点状粒子更复杂的机械对象。在天文学和空间科学中,刚体的运动对于描述从土卫七(土星的一个土豆状的小卫星)的混沌翻滚到太空舱或卫星的规律旋转等现象都具有重要意义。在研究刚体动力学时,柯瓦列夫斯卡娅得出了两个重要结果。一个重要的结果是,她全面分析和解决了陀螺的运动问题,这与牛顿解决二体问题具有同等重要的意义。尽管另外两个这样的“可积陀螺”早已为人所知,但她研究的这个更加精妙和令人吃惊。俄罗斯数学家柯瓦列夫斯卡娅(1850-1891),对刚体旋转有深入研究。她是第一位获得数学博士学位、第一位获得大学教授职位的女性另一个重要的结果是,她证明了不可能存在其他可解陀螺。她发现的正是最后一个,而余下的陀螺都是不可解的,这意味着它们的动力学问题也不可能用牛顿式公式来解决。这不是一个智力不足的问题,而只是证明了根本没有能描述所有陀螺运动的特定类型的公式(时间的亚纯函数)。就这样,她限定了微积分的适用范围。一个陀螺即可挑战拉普拉斯妖,从原则上说,找到关于宇宙命运的公式也无望了。索菲·柯瓦列夫斯卡娅发现的不可解性与陀螺方程的一个结构特性有关,即该方程是非线性的。我们在这里无须关注非线性的技术意义,就目的而言,我们只需要感受线性系统与非线性系统之间的区别,这一点通过思考日常生活中的一些例子即可实现。为了说明线性系统是什么样子,我们假设有两个人纯粹出于玩乐的目的,同时上秤称他们的体重。两个人的总重量是他们各自的体重之和,这是因为秤是一种线性装置。他们的体重既不会相互影响,也不会导致任何需要注意的棘手情况。比如,他们的身体不会以某种方式互相串通, 使总重量变轻,或者互相妨碍,使总重量变重。所以,它们只是相加。在像秤这样的线性系统中,整体等于部分之和,这是线性的第一个关键特性。线性的第二个特性是,原因与结果成正比。想象一下弓箭手拉弓弦的情景。如果把弓弦向后拉一定的距离需要花一定大小的力,那么将弓弦向后拉两倍的距离就需要花两倍大小的力。所以,原因和结果成正比。这两个特性(整体等于部分之和,原因和结果成正比)就是线性含义的本质。然而,自然界中的许多事情都比拉弓弦复杂得多。当系统的各个部分互相干扰、合作或竞争时,就会发生非线性的相互作用。大部分日常活动显然都是非线性的,如果同时听你最喜欢的两首歌,你不会得到双倍的快乐。如果同时喝酒和吸毒,两者相互作用甚至会产生致命的结果。相比之下,花生酱和果冻搭配起来吃效果更佳,它们不是简单地相加,而是协同增效。非线性让世界变得丰富多彩、美妙而复杂,还常常是不可预测的。比如,生物学的方方面面都是非线性的,社会学亦如此。这就是软科学很难也是最后才被数学化的原因。由于非线性的特性,它们一点儿也不“柔软”。线性和非线性之间的区别同样适用于微分方程,但没有那么直观。需要说明的一点是,如果微分方程是非线性的,就像柯瓦列夫斯卡娅的陀螺那样,分析起来就会极其困难。从牛顿开始,数学家都尽可能地避免使用非线性微分方程,因为在他们看来,这类方程既令人不悦,又难以掌控。相反,线性微分方程既令人愉悦,又容易驯服。数学家喜欢它们,就是因为它们简单。所以,解决这类方程的相关理论有很多。实际上, 直到20世纪80年代前后,应用数学家受到的传统教育几乎完全集中在线性方法的运用上,其中有好几年都在学习傅里叶级数和其他求解线性方程的技巧。线性的一大优势在于,它为还原论思维的运用创造了条件。要解决一个线性问题,我们可以先把它分解成几个最简单的部分,再分别求解每个部分,最后把它们组合起来得到答案。傅里叶正是利用这种还原论策略解出了他的热传导(线性)方程。他先把复杂的温度分布分解成多个正弦波,再算出所有正弦波各自的变化,最后将这些正弦波重新组合起来, 去预测加热金属棒的整体温度变化情况。这个策略之所以可行,就是因为热传导方程是线性的,它可以在不失去其本质的情况下被切分成小段。索菲·柯瓦列夫斯卡娅让我们认识到,当我们最终勇敢地面对非线性时,这个世界看上去会有多么不同。她意识到,非线性能限制人类的狂妄自大。如果一个系统是非线性的,它的行为就不可能用公式来预测,即使该行为是完全确定的。换句话说,决定论并不意味着可预测性。虽然陀螺只是一种小孩子的玩意,但它的运动能让我们在求知时怀有一颗谦逊之心。现在回想起来,我们就能更清楚地知道为什么牛顿在尝试解决三体问题时会头疼了。三体问题和二体问题不同,前者无疑是非线性的,而后者可以被改造成线性的。非线性并不是由二体骤变为三体导致的,而是由方程本身的结构引发的。对两个而非三个或更多的引力体来说,非线性可以通过在微分方程中恰当地选择新变量来消除。人们花了很长时间才充分认识到非线性有让人变得谦逊的作用。数学家为解决三体问题苦苦挣扎了几个世纪,尽管取得了些许进展,却没有人能彻底破解它。19世纪末,法国数学家亨利·庞加莱自认为解决了这个问题,但他犯了一个错误。在修正了错误之后,尽管仍然无法解决三体问题,但他发现了更重要的现象,我们现在称之为混沌。混沌系统是非常讲究细节的,即使是开始方式的小小改变,也会产生大不相同的结果,这是因为初始条件的小变化会以指数方式放大。任何微小的误差或扰动都会像滚雪球一样迅速增大,以至于从长远看,这个系统会变得不可预测。混沌系统不是随机的,而是确定的,因此短期来看它们是可预测的。但长期来看,它们对微小的扰动十分敏感,以至于在许多方面实际上都是随机的。混沌系统在某个时间之前是完全可以预测的,这个时间被称为可预测性时界。在此之前,系统的确定性使其具有可预测性。根据计算,整个太阳系的可预测性时界约为400万年。对于比这短得多的时间,比如地球绕太阳一周所需的时间(一年),一切都会像时钟一样有规律地运转。然而,一旦过了几百万年,一切就会变得无法预测。太阳系中所有天体之间微妙的引力摄动不断累积,直至我们再也无法准确地预测这个系统的行为。庞加莱在研究过程中发现了可预测性时界的存在。在他之前,人们认为误差只会随着时间呈线性增长,而非指数增长;如果时间翻倍,误差也会翻倍。随着误差的线性增长,改进测量方法总能满足人们做出长期预测的需求。但是,当误差以指数方式迅速增长时,系统对其初始条件就会产生敏感依赖性,长期预测也会变得不再可行。这就是混沌系统在哲学上令人不安的地方。庞加莱在三体问题研究中发现了确定性混沌,奠定了现代混沌理论的基础理解混沌系统的上述特性至关重要。一直以来人们都知道像天气这样的大型复杂系统是很难预测的,但令人惊讶的是,像陀螺或三体这样的简单事物同样不可预测。这对天真地想把决定论与可预测性合并起来的拉普拉斯来说,是又一次打击。从积极的方面看,混沌系统中之所以存在秩序的痕迹,是因为它们的确定性特征。庞加莱开发出分析非线性系统(包括混沌系统)的新方法,并找到了提取出隐藏其中的某些秩序的方法。他使用的是图像和几何学,而不是公式和代数;他的定性方法为拓扑学和动力系统等现代数学领域播下了种子。得益于他的开创性研究,我们现在对秩序和混沌都有了更好的理解。我们不妨以伽利略研究过的钟摆摆动问题为例,说明庞加莱的方法是如何发挥作用的。利用牛顿运动定律并关注钟摆摆动时受到的力,我们可以画出一幅展示钟摆每时每刻的角度和速度变化情况的抽象示意图。这幅图基本上是对牛顿定律的一种视觉化翻译,除了微分方程中的已有要素外,图中没有任何其他新内容。简言之,它只是查看相同信息的另一种方式。这幅图好像一幅展示乡村天气模式的示意图。在这样的图上,我们会看到示局部传播方向,也就是天气锋面每时每刻的移动方式的箭头。这和微分方程提供的信息一样,和舞蹈指令给出的信息(比如,左脚放在这里,右脚放在那里)也一样。这样的图被称为矢量场图,上面的小箭头是矢量,表明如果单摆的角度和速度是现在这种情况,那么它们在片刻之后应该会变成什么样子。钟摆的矢量场图如图11–1 所示:在我们解释这幅图之前,请记住它是抽象的,因为它并没有展示出钟摆的实际形象。旋涡状的箭头图样不像一个挂在绳子上的重物,钟摆的照片可不是这样的。(矢量场图下方有钟摆摆动的草图,你可以从中体会这句话的意思。)矢量场图并不是对钟摆的现实描绘,而是展示钟摆状态从一个时刻到下一个时刻的变化情况的抽象图示。图上的每个点都代表钟摆的角度与速度在某个瞬间的可能组合,横轴代表钟摆的角度,纵轴代表它的速度。在任意时刻,如果知道了角度和速度,我们就可以定义钟摆的动态。当我们预测钟摆在下一时刻和此后各个时刻的角度和速度时,箭头可以提供我们所需的信息,我们要做的就只是跟着它们走。箭头在中心附近的旋涡状排列方式,对应着几乎垂直向下的钟摆的简单往复运动;而顶部和底部箭头的波浪状排列方式,则对应着钟摆像螺旋桨一样有力地转过最高点的运动。牛顿和伽利略从未考虑过这种涡旋状运动,它们已经超出了经典方法的计算范围。然而,我们在庞加莱图中可以清楚地看到涡旋状运动。现在,这种研究微分方程的定性方法是非线性动力学的所有相关领域——从激光物理学到神经科学——的一个重要组成部分。非线性动力学非常实用。在英国数学家玛丽·卡特赖特和约翰·李特尔伍德的努力下,庞加莱的方法为英国在战时对抗纳粹的空袭做出了贡献1938年,英国科学与工业研究部恳请伦敦数学学会帮助解决一个问题,该问题与英国政府秘密研发的无线电探测和测距(现在叫作“雷达”)技术有关。项目工程师对在放大器中观测到的嘈杂和不规则的振动现象备感困惑,当这些装置由高功率的高频无线电波驱动时,这种现象表现得尤为明显。他们担心可能是设备出了问题。玛丽·卡特赖特(1900-1998)是混沌理论的先驱之一政府的求助引起了卡特赖特的注意,她一直在研究由类似的“看起来令人厌恶的微分方程”支配的振动系统模型。她和李特尔伍德后来发现了雷达电子设备中不规则振动的来源:放大器是非线性的,如果被驱动得太快和太厉害,它们就会产生不规则的反应。
几十年后,物理学家弗里曼·戴森追忆了1942年他聆听卡特赖特演讲时的情形。他写道:在第二次世界大战期间,雷达的全面发展依赖于高功率的放大器,所以拥有有效的放大器成为一件生死攸关的事情。士兵们饱受失效放大器的折磨,并为此谴责制造商的无良行为。然而,卡特赖特和李特尔伍德发现,该受责备的不是制造商,而是方程本身。卡特赖特和李特尔伍德的洞见促使雷达工程师在放大器的行为更具可预测性的情况下操作它们,从而解决了这个问题。尽管做出了重要贡献,但卡特赖特一直表现得很谦逊。当读到戴森撰写的关于她的研究成果的文章时,她还责备他言过其实。玛丽·卡特赖特女爵士于1998年去世,享年97岁。她是第一位入选英国皇家学会的女性数学家。她留下了严格的指示,绝对不要在她的追悼会上致颂词。战时求解微分方程的需要,推动了计算机的发展。当时被称为机械电子大脑的计算机,通过考虑空气阻力和风向等复杂情况,可以计算出现实条件下火箭和炮弹的飞行轨迹。战场上的炮兵军官需要利用这些信息去命中目标,所有必需的弹道数据都要提前算出来,并编制成标准的表格和图表。因此,高速计算机对完成这项任务而言至关重要。在数学模拟中,计算机利用恰当的微分方程和一个个小增量来更新炮弹的位置和速度,然后通过海量的加法运算(蛮力算法)得出答案,从而使一枚理想的炮弹沿它的飞行轨迹小步前进。只有机器才能不停歇地运转,并且快速、准确和不知疲倦地执行所有必要的加法和乘法运算。从一些最早期计算机的名称中,我们可以明显地看出微积分在这项工作中的贡献。其中一种是名为微分分析仪的机械装置,它的工作是求解用于计算火炮射表的微分方程。另一种名为电子数字积分计算机(ENIAC),它建造于1945 年,是第一批可重复编程的通用计算机之一。除了计算火炮射表以外,它也能用于评估氢弹的技术可行性。尽管微积分和非线性动力学的军事应用促进了计算机的发展,但在和平时期,计算机在数学和机器方面同样大有可为。20世纪50年代,科学家开始使用计算机去解决他们各自学科(除物理学以外)中出现的问题。比如,英国生物学家艾伦·霍奇金和安德鲁·赫胥黎需要在计算机的帮助下理解神经细胞是如何相互交流的,更具体地说,就是电信号如何沿神经纤维传导。他们进行了艰苦细致的实验,计算钠离子和钾离子流经一种很大且便于实验的神经纤维(鱿鱼的巨大轴突)膜的情况,并根据经验推断出这些离子流如何受到膜电位的影响,而膜电位又如何被离子流改变。但如果没有计算机,他们就无法计算神经脉冲沿轴突传导时的速度和形状。想计算神经脉冲的动态,就要求解一个膜电位作为时间和空间函数的非线性偏微分方程。安德鲁·赫胥黎花了三周时间,终于在一台手摇机械计算器上解决了这个问题。霍奇金(1914-1998)和赫胥黎(1917-2012)由于发现神经细胞膜的单离子通道而获得1963年诺贝尔生理学或医学奖
1963年,霍奇金和赫胥黎因为发现了神经细胞工作原理的离子基础,共同获得了诺贝尔生理学或医学奖。对所有有意将数学应用于生物学领域的人来说,他们的方法都是一个很大的启发。这无疑扩展了微积分的应用领域,数学生物学是对非线性微分方程的一次不受限的运用。在牛顿式分析方法和庞加莱式几何方法的帮助下,以及对计算机的泰然自若的依赖下,数学生物学家正在寻找支配心律、传染病传播、免疫系统运转、基因编辑、癌症发展和其他许多生命奥秘的微分方程,并取得了一定的进展。而如果没有微积分,他们可能根本做不到。