0条评论
还没有人评论过~
一、准备
1. echarts-3.3.2.min.js
2. jquery.1.11.1.min.js
二、圆角加多渐变条形(ie8+)统计图
function barChart(id,data1,data2) {
var colorShow = [
[
{offset: 0, color: '#FDD841'},
{offset: 0.5, color: '#FAB84B'},
{offset: 1, color: '#F79E55'}
],
[
{offset: 0, color: '#65D5FA'},
{offset: 0.5, color: '#2A93D6'},
{offset: 1, color: '#1868BC'}
],
[
{offset: 0, color: '#36CBCE'},
{offset: 0.5, color: '#2EC7BF'},
{offset: 1, color: '#29C3AE'}
],
[
{offset: 0, color: '#EC97A7'},
{offset: 0.5, color: '#DA6986'},
{offset: 1, color: '#CA426B'}
]
];
var colorHover = [
{offset: 1, color: '#1868BC'},
{offset: 0.5, color: '#2A93D6'},
{offset: 0, color: '#65D5FA'}
];
var chartGradient = function(params,colorList){
//每个柱子的颜色即为colorList数组里的每一项,如果柱子数目多于colorList的长度,则柱子颜色循环使用该数组
return new echarts.graphic.LinearGradient(0, 0, 0, 1, colorList[params.dataIndex] )
};
var option2 = {
tooltip: {
trigger: 'axis'
},
calculable: true,
xAxis: [
{
type: 'category',
data: data1
}
],
yAxis: [
{
type: 'value',
name: ' ',
axisLabel: {
formatter: '{value} '
}
}
],
grid:{
left:'8%',
right:'2%',
top:'16%',
bottom:'12%'
},
series: [
{
type: 'bar',
barWidth: '20%',
barCategoryGap: '50%',
data: data2,
itemStyle: {
//柱形图圆角,鼠标移上去效果
emphasis: {
barBorderRadius:50,
color: new echarts.graphic.LinearGradient(0, 0, 0, 1,colorHover )
},
normal: {
//柱形图圆角,初始化效果
barBorderRadius: 50,
color:function(params){
return chartGradient(params,colorShow)
}
}
}
}
]
};
var Chart2 = echarts.init(document.getElementById(id));
Chart2.setOption(option2, true);
$(window).resize(function (event) {
Chart2.resize();
});
}
barChart('c-device-bar',["关机时长", "运行时长", "空闲时长", "维修时长"],[6, 18, 3, 5]);
效果展示:
三、渐变加背景图(ie8+)饼图
.c-line-charts-pie {
width: 204px;
height: 204px;
}
<div class="c-line-charts-pie f_left" id="c-device-charts-pie"></div>
//饼状图
function pieChart(id,name,value,color,radius,state){
var piePatternSrc = '';
var piePatternImg = new Image();
piePatternImg.src = piePatternSrc;
/*判读IE8-*/
var judge = $.support.leadingWhitespace;
if(state == 1){
var itemStyle = {
normal: {
color: {
image: piePatternImg,
repeat: 'repeat',
//position:'center'
},
borderWidth: 0,
borderColor: 'rgba(0,0,0,0)'
}
};
}else if(state == 0){
var itemStyle = {
normal : {
color:'rgba(0,0,0,0)'
}
}
}
var labelTop = {
normal : {
label : {
show : true,
position : 'center',
formatter : '{b}',
textStyle: {
baseline : 'bottom',
fontSize:'20',
color:'#777777'
}
},
labelLine : {
show : false
}
}
};
var labelBottom = {
normal : {
color: 'rgba(0,0,0,0)',
label : {
show : true,
position : 'center',
textStyle: {
fontSize:'20',
color:color[1]
}
},
labelLine : {
show : false
}
},
emphasis: {
color: '#e9eee8'
}
};
var colorStyle = judge ? new echarts.graphic.LinearGradient(0, 0, 0, 1,[{offset: 0, color: color[0]},{offset: 1, color: color[1]}] ): color[0];
var option1 = {
grid:{
left:'8%',
right:'0',
top:'10%',
bottom:'1%',
containLabel: true
},
series : [
{
type : 'pie',
hoverAnimation:false,
center : ['50%', '50%'],
radius : ['0%', '70%'],
x: '0%',
data : [
{name:'', value:0, itemStyle : labelBottom},
{name:'', value:100,itemStyle : labelTop}
],
itemStyle: itemStyle
},
{
type : 'pie',
hoverAnimation:false,
center : ['50%', '50%'],
radius : radius,
x: '0%',
itemStyle : {
normal : {
color:'#e9eee8'
}
},
data : [
{name:'', value:0, itemStyle : labelBottom},
{name:'', value:100,itemStyle : labelTop}
]
},
{
type : 'pie',
hoverAnimation:true,
hoverOffset: 6,
center : ['50%', '50%'],
radius : radius,
x: '0%',
itemStyle : {
normal : {
color:colorStyle
}
},
data : [
{name:value +'%', value:100 - value, itemStyle : labelBottom},
{name:name, value:value,itemStyle : labelTop}
]
},
]
};
var Chart1 = echarts.init(document.getElementById(id));
Chart1.setOption(option1,true);
$(window).resize(function(event) {
Chart1.resize();
});
}
pieChart('c-device-charts-pie','OEE',90,['#4ed8ff','#0c5ab5'],['70%', '80%'],1);
效果展示:
来源:oschina
链接:https://my.oschina.net/u/4360327/blog/3976420