Bug是软件开发过程中最基本的问题载体,在这一方向,我们可以细化为几种数据指标,例如:
1.Bug数量分布(功能模块维度):
按照功能模块维度,分别统计Bug的数量(也可以是严重Bug数量)情况,该项指标用以反映哪个功能模块的质量情况最低。例如:搜狗输入法有语音输入、拼音输入、手写输入,分别统计某个版本这三个模块的Bug情况。
解释说明:
首先我们可以判断Bug数量高的模块是否合理。如上图所示,本次版本开发主要实现和修改的是语音功能,那么Bug数量多是合理的。
其次我们可以有针对性的部署测试策略。语音功能的问题数量较多,功能比较复杂,只是按照既有的测试计划可能模块质量覆盖不够全面,所以我们有针对性地对这个模块进行二轮、三轮甚至四轮的回归测试,或者安排更多地人力。
2.Bug数量分布(开发人员维度):
按照开发人员维度,分别统计每个开发人员所产生的Bug数量情况,该项指标用以辅助评估开发人员的代码质量情况。
解释说明:
这一指标可以帮助我们了解哪位开发的Bug修复压力最大(压力越大,连带Bug的可能性也会越大),测试人员可以留意对应开发的Bug修复率。
如果某位开发的Bug数量常年居高不下,测试人员就要注意小心了~~。
需要特别说明的一点是,Bug数量不能作为唯一评判开发人员代码质量好坏的数据,Bug数量是与开发人员提交代码量和模块复杂度成正比的,综合地查看Bug数量和代码提交量是比较可行的方法。
3.Bug易发现分布(功能模块维度):
Bug易发现是指一个功能模块在用户可触及的主路径上就会遇到的Bug,例如:在输入法的键盘上按下语音键进行语音输入时,功能不能使用。该指标用以统计提测模块的开发自测情况,数据越多说明提测时质量越差。
4.Bug易发现分布(开发人员维度):
同上,以开发人员维度进行分析统计。
5.Bug往返率(开发人员维度):
该指标用于统计Bug在缺陷管理系统中的来回指派数量的情况。比如:某Bug在开发人员A和测试人员B之间来回指派了3次,那么则统计开发人员A的Bug往返平均数量。
6.Bug发现的阶段:
该指标可选项有预测试、一轮测试、二轮测试、回归测试、上线前测试、上线后几个可选项,它用于体现Bug的发现时间段。
解释说明:
预测试一般是开发提测后进行1天的测试,用以评估提测的版本是否符合测试的要求。如果大量的Bug在预测试阶段发现(甚至是阻塞的Bug出现),说明提测版本的质量可能不好,这就需要督促开发给出质量更高的版本提测,以节省Bug沟通处理的成本,从而大大提升测试效率。
正式提测后,按照预期的效果,我们希望是大量的Bug在一轮测试阶段发现,少量的Bug在二轮测试阶段发现,极少量的Bug在回归测试阶段暴露。但是实际情况可能有所不同,如果二轮和回归阶段的Bug数量很多,这有可能是测试人员的测试方法、测试策略有问题,导致Bug暴露发现得比较晚;也可能是开发修复Bug时连带其他Bug数量多,这间接反映了开发修复Bug的方式方法可能有问题。
7.Bug产生的原因:
这一选项是Bug在提交测试验证时,由由开发人员填写的字段,该字段可选内容有:服务器问题、第三方SDK问题、适配性问题、UI显示问题、程序逻辑问题、性能问题、沟通不足问题、需求理解问题。(具体字段可选项可根据实际项目进行设定),这一指标用来辅助开发人员分析Bug产生的原因。
解释说明:
服务端问题(本例因为是客户端程序,所以选项中有服务端问题)如果存在大量的Bug,这说明服务端的质量控制不足。
第三方SDK问题。因为App一般会使用其他方提供的SDK直接调用,对于SDK的质量情况可以通过该项指标数据来暴露,如果问题集中且较多,后续应该推动SDK方提升其质量品质。
沟通不足、需求理解问题一般是工作配合类问题,如果是此类问题集中,应该重新评估整体项目流程运转是否正常有效。