I have a Visual Studio 2010 C++ program, the main function of which is:
vector<double> v(10);
double start = 0.0; double increment = 10.0;
auto f = [&start, increment]() { return start += increment; };
generate(v.begin(), v.end(), f);
for(auto it = v.cbegin(); it != v.cend(); ++it) { cout << *it << ", "; }
cout << endl << "Changing vars to try again..." << endl;
start = 15; increment = -1.5;
generate(v.begin(), v.end(), f);
for(auto it = v.cbegin(); it != v.cend(); ++it) { cout << *it << ", "; }
return 0;
When I compile this in MS Visual Studio, the first generate does what I expected, resulting in "10, 20, ... 100, ". The second does not; the lambda "sees" the change in start
but not the change in increment
, so I get "25, 35, ... 115, ".
MSDN explains that
The Visual C++ compiler binds a lambda expression to its captured variables when the expression is declared instead of when the expression is called. ... [T]he reassignment of [a variable captured by value] later in the program does not affect the result of the expression.
So my question is: is this standards-compliant C++11 behavior, or is it Microsoft's own eccentric implementation? Bonus: if it is standard behavior, why was the standard written that way? Does it have to do with enforcing referential transparency for functional programming?
With a lambda expression, the bound variables are captured at the time of declaration.
This sample will make it very clear: https://ideone.com/Ly38P
std::function<int()> dowork()
{
int answer = 42;
auto lambda = [answer] () { return answer; };
// can do what we want
answer = 666;
return lambda;
}
int main()
{
auto ll = dowork();
return ll(); // 42
}
It is clear that the capture must be happening before the invocation, since the variables being captured don't even exist (not in scope, neither in lifetime) anymore at a later time.
It's bound at creation time. Consider:
#include <functional>
#include <iostream>
std::function<int(int)> foo;
void sub()
{
int a = 42;
foo = [a](int x) -> int { return x + a; };
}
int main()
{
sub();
int abc = 54;
abc = foo(abc); // Note a no longer exists here... but it was captured by
// value, so the caller shouldn't have to care here...
std::cout << abc; //96
}
There's no a
here when the function is called -- there'd be no way for the compiler to go back and update it. If you pass a
by reference, then you have undefined behavior. But if you pass by value any reasonable programmer would expect this to work.
I think you are confusing the mechanism of capture with the mechanism of variable passing. They are not the same thing even if they bear some superficial resemblance to one another. If you need the current value of a variable inside a lambda expression, capture it by reference (though, of course, that reference is bound to a particular variable at the point the lambda is declared).
When you 'capture' a variable, you are creating something very like a closure. And closures are always statically scoped (i.e. the 'capture' happens at the point of declaration). People familiar with the concept of a lambda expression would find C++'s lambda expressions highly strange and confusing if it were otherwise. Adding a brand new feature to a programming language that is different from the same feature in other programming languages in some significant way would make C++ even more confusing and difficult to understand than it already is. Also, everything else in C++ is statically scoped, so adding some element of dynamic scoping would be very strange for that reason as well.
Lastly, if capture always happened by reference, then that would mean a lambda would only be valid as long as the stack frame was valid. Either you would have to add garbage collected stack frames to C++ (with a huge performance hit and much screaming from people who are depending on the stack being largely contiguous) or you would end up creating yet another feature where it was trivially easy to blow your foot off with a bazooka by accident as the stack frame referenced by a lambda expression would go out of scope and you'd basically be creating a lot of invisible opportunities to return local variables by reference.
Yes, it has to capture by value at the point because otherwise you could attempt to capture a variable (by reference for example) that no longer exists when the lambda/function is actually called.
The standard supports capturing both by value AND by reference to address both possible use cases. If you tell the compiler to capture by value it's captured at the point the lambda is created. If you ask to capture by reference, it will capture a reference to the variable which will then be used at the point the lambda is called (requiring of course that the referenced variable must still exist at the point the call is made).