I\'m writing a WebSocket server where a web client connects to play chess against a multithreaded computer AI. The WebSocket server wants to pass a Logger
object into the AI code. The Logger
object is going to pipe down log lines from the AI to the web client. The Logger
must contain a reference to the client connection.
I\'m confused about how lifetimes interact with threads. I\'ve reproduced the problem with a Wrapper
struct parameterized by a type. The run_thread
function tries to unwrap the value and log it.
use std::fmt::Debug;
use std::thread;
struct Wrapper<T: Debug> {
val: T,
}
fn run_thread<T: Debug>(wrapper: Wrapper<T>) {
let thr = thread::spawn(move || {
println!(\"{:?}\", wrapper.val);
});
thr.join();
}
fn main() {
run_thread(Wrapper::<i32> { val: -1 });
}
The wrapper
argument lives on the stack, and its lifetime doesn\'t extend past run_thread
\'s stack frame, even though the thread will be joined before the stack frame ends. I\'d could copy the value off the stack:
use std::fmt::Debug;
use std::thread;
struct Wrapper<T: Debug + Send> {
val: T,
}
fn run_thread<T: Debug + Send + \'static>(wrapper: Wrapper<T>) {
let thr = thread::spawn(move || {
println!(\"{:?}\", wrapper.val);
});
thr.join();
}
fn main() {
run_thread(Wrapper::<i32> { val: -1 });
}
This will not work if T
is a reference to a big object I don\'t want copied:
use std::fmt::Debug;
use std::thread;
struct Wrapper<T: Debug + Send> {
val: T,
}
fn run_thread<T: Debug + Send + \'static>(wrapper: Wrapper<T>) {
let thr = thread::spawn(move || {
println!(\"{:?}\", wrapper.val);
});
thr.join();
}
fn main() {
let mut v = Vec::new();
for i in 0..1000 {
v.push(i);
}
run_thread(Wrapper { val: &v });
}
Which results in:
error: `v` does not live long enough
--> src/main.rs:22:32
|
22 | run_thread(Wrapper { val: &v });
| ^ does not live long enough
23 | }
| - borrowed value only lives until here
|
= note: borrowed value must be valid for the static lifetime...
The only solution I can think of is to use an Arc
.
use std::fmt::Debug;
use std::sync::Arc;
use std::thread;
struct Wrapper<T: Debug + Send + Sync + \'static> {
arc_val: Arc<T>,
}
fn run_thread<T: Debug + Send + Sync + \'static>(wrapper: &Wrapper<T>) {
let arc_val = wrapper.arc_val.clone();
let thr = thread::spawn(move || {
println!(\"{:?}\", *arc_val);
});
thr.join();
}
fn main() {
let mut v = Vec::new();
for i in 0..1000 {
v.push(i);
}
let w = Wrapper { arc_val: Arc::new(v) };
run_thread(&w);
println!(\"{}\", (*w.arc_val)[0]);
}
In my real program, it appears that both the Logger
and the connection object must be placed in Arc
wrappers. It seems annoying that the client is required to box the connection in an Arc
when it is internal to the library that the code is parallelized. This is especially annoying because the lifetime of the connection is guaranteed to be greater than the lifetime of the worker threads.
Have I missed something?