I have a dataframe:
df <- data.frame('a'=c(1,2,3,4,5), 'b'=c(1,20,3,4,50))
df
a b
1 1 1
2 2 20
3 3 3
4 4 4
5 5 50
and I want to create a new column based on existing columns. Something like this:
if (df[['a']] == df[['b']]) {
df[['c']] <- df[['a']] + df[['b']]
} else {
df[['c']] <- df[['b']] - df[['a']]
}
The problem is that the if
condition is checked only for the first row... If I create a function from the above if
statement then I use apply()
(or mapply()
...), it is the same.
In Python/pandas I can use this:
df['c'] = df[['a', 'b']].apply(lambda x: x['a'] + x['b'] if (x['a'] == x['b']) \
else x['b'] - x['a'], axis=1)
I want something similar in R. So the result should look like this:
a b c
1 1 1 2
2 2 20 18
3 3 3 6
4 4 4 8
5 5 50 45
One option is ifelse
which is vectorized version of if/else
. If we are doing this for each row, the if/else
as showed in the OP's pandas post can be done in either a for
loop or lapply/sapply
, but that would be inefficient in R
.
df <- transform(df, c= ifelse(a==b, a+b, b-a))
df
# a b c
#1 1 1 2
#2 2 20 18
#3 3 3 6
#4 4 4 8
#5 5 50 45
This can be otherwise written as
df$c <- with(df, ifelse(a==b, a+b, b-a))
to create the 'c' column in the original dataset
As the OP wants a similar option in R
using if/else
df$c <- apply(df, 1, FUN = function(x) if(x[1]==x[2]) x[1]+x[2] else x[2]-x[1])
Here is a slightly more confusing algebraic method:
df$c <- with(df, b + ((-1)^((a==b)+1) * a))
df
a b c
1 1 1 2
2 2 20 18
3 3 3 6
4 4 4 8
5 5 50 45
The idea is that the "minus" operator is turned on or off based on the test a==b
.
A solution with apply
myFunction <- function(x){
a <- x[1]
b <- x[2]
#further values ignored (if there are more than 2 columns)
value <- if(a==b) a + b else b - a
#or more complicated stuff
return(value)
}
df$c <- apply(df, 1, myFunction)
If you want an apply method, then another way with mapply
would be create a function and apply it,
fun1 <- function(x, y) if (x == y) {x + y} else {y-x}
df$c <- mapply(fun1, df$a, df$b)
df
# a b c
#1 1 1 2
#2 2 20 18
#3 3 3 6
#4 4 4 8
#5 5 50 45
Using dplyr package:
library(dplyr)
df <- df %>%
mutate(c = if_else(a == b, a + b, b - a))
df
# a b c
# 1 1 1 2
# 2 2 20 18
# 3 3 3 6
# 4 4 4 8
# 5 5 50 45