It is a truth universally acknowledged that R's base reshape command is speedy and powerful but has miserable syntax. I have therefore written a quick wrapper around it which I will throw into the next release of the taRifx
package. Before I did that, however, I want to solicit improvements.
Here's my version, with updates from @RichieCotton:
# reshapeasy: Version of reshape with way, way better syntax
# Written with the help of the StackOverflow R community
# x is a data.frame to be reshaped
# direction is "wide" or "long"
# vars are the names of the (stubs of) the variables to be reshaped (if omitted, defaults to everything not in id or vary)
# id are the names of the variables that identify unique observations
# vary is the variable that varies. Going to wide this variable will cease to exist. Going to long it will be created.
# omit is a vector of characters which are to be omitted if found at the end of variable names (e.g. price_1 becomes price in long)
# ... are options to be passed to stats::reshape
reshapeasy <- function( data, direction, id=(sapply(data,is.factor) | sapply(data,is.character)), vary=sapply(data,is.numeric), omit=c("_","."), vars=NULL, ... ) {
if(direction=="wide") data <- stats::reshape( data=data, direction=direction, idvar=id, timevar=vary, ... )
if(direction=="long") {
varying <- which(!(colnames(data) %in% id))
data <- stats::reshape( data=data, direction=direction, idvar=id, varying=varying, timevar=vary, ... )
}
colnames(data) <- gsub( paste("[",paste(omit,collapse="",sep=""),"]$",sep=""), "", colnames(data) )
return(data)
}
Note that you can move from wide to long without changing the options other than the direction. To me, this is the key to usability.
I'm happy to give acknowledgement in the function help files for any substantial improvements if you chat or e-mail me your info.
Improvements might fall in the following areas:
- Naming the function and its arguments
- Making it more general (currently it handles a fairly specific case, which I believe to be by far the most common, but it has not yet exhausted the capabilities of stats::reshape)
- Code improvements
Examples
Sample data
x.wide <- structure(list(surveyNum = 1:6, pio_1 = structure(c(2L, 2L, 1L,
2L, 1L, 1L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), pio_2 = structure(c(2L, 1L, 2L, 1L,
2L, 2L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), pio_3 = structure(c(2L, 2L, 1L, 1L,
2L, 1L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), caremgmt_1 = structure(c(2L, 1L, 1L,
2L, 1L, 2L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), caremgmt_2 = structure(c(1L, 2L, 2L,
2L, 2L, 1L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), caremgmt_3 = structure(c(1L, 2L, 1L,
2L, 1L, 1L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), prev_1 = structure(c(1L, 2L, 2L, 1L,
1L, 2L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), prev_2 = structure(c(2L, 2L, 1L, 2L,
1L, 1L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), prev_3 = structure(c(2L, 1L, 2L, 2L,
1L, 1L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2"), class = "factor"), price_1 = structure(c(2L, 1L, 2L, 5L,
3L, 4L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2", "3", "4", "5", "6"), class = "factor"), price_2 = structure(c(6L,
5L, 5L, 4L, 4L, 2L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2", "3", "4", "5", "6"), class = "factor"), price_3 = structure(c(3L,
5L, 2L, 5L, 4L, 5L), .Names = c("1", "2", "3", "4", "5", "6"), .Label = c("1",
"2", "3", "4", "5", "6"), class = "factor")), .Names = c("surveyNum",
"pio_1", "pio_2", "pio_3", "caremgmt_1", "caremgmt_2", "caremgmt_3",
"prev_1", "prev_2", "prev_3", "price_1", "price_2", "price_3"
), idvars = "surveyNum", rdimnames = list(structure(list(surveyNum = 1:24), .Names = "surveyNum", row.names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24"
), class = "data.frame"), structure(list(variable = structure(c(1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L), .Label = c("pio",
"caremgmt", "prev", "price"), class = "factor"), .id = c(1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L)), .Names = c("variable",
".id"), row.names = c("pio_1", "pio_2", "pio_3", "caremgmt_1",
"caremgmt_2", "caremgmt_3", "prev_1", "prev_2", "prev_3", "price_1",
"price_2", "price_3"), class = "data.frame")), row.names = c(NA,
6L), class = c("cast_df", "data.frame"))
x.long <- structure(list(.id = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), pio = structure(c(2L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L,
1L, 2L, 2L, 1L, 2L, 1L, 1L), .Label = c("1", "2"), class = "factor"),
caremgmt = structure(c(2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L,
1L, 2L, 2L), .Label = c("1", "2"), class = "factor"), prev = structure(c(1L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L), .Label = c("1",
"2"), class = "factor"), price = structure(c(2L, 1L, 2L,
5L, 3L, 4L, 1L, 5L, 4L, 3L, 1L, 2L, 6L, 6L, 5L, 4L, 6L, 3L,
5L, 6L, 3L, 1L, 2L, 4L, 3L, 5L, 2L, 5L, 4L, 5L, 6L, 6L, 4L,
6L, 4L, 1L, 2L, 3L, 1L, 2L, 2L, 5L, 1L, 6L, 1L, 3L, 4L, 3L,
6L, 5L, 5L, 4L, 4L, 2L, 2L, 2L, 6L, 3L, 1L, 4L, 4L, 5L, 1L,
3L, 6L, 1L, 3L, 5L, 1L, 3L, 6L, 2L), .Label = c("1", "2",
"3", "4", "5", "6"), class = "factor"), surveyNum = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L)), .Names = c(".id",
"pio", "caremgmt", "prev", "price", "surveyNum"), row.names = c(NA,
-72L), class = "data.frame")
Examples
> x.wide
surveyNum pio_1 pio_2 pio_3 caremgmt_1 caremgmt_2 caremgmt_3 prev_1 prev_2 prev_3 price_1 price_2 price_3
1 1 2 2 2 2 1 1 1 2 2 2 6 3
2 2 2 1 2 1 2 2 2 2 1 1 5 5
3 3 1 2 1 1 2 1 2 1 2 2 5 2
4 4 2 1 1 2 2 2 1 2 2 5 4 5
5 5 1 2 2 1 2 1 1 1 1 3 4 4
6 6 1 2 1 2 1 1 2 1 1 4 2 5
> reshapeasy( x.wide, "long", NULL, id="surveyNum", vary="id", sep="_" )
surveyNum id pio caremgmt prev price
1.1 1 1 2 2 1 2
2.1 2 1 2 1 2 1
3.1 3 1 1 1 2 2
4.1 4 1 2 2 1 5
5.1 5 1 1 1 1 3
6.1 6 1 1 2 2 4
1.2 1 2 2 1 2 6
2.2 2 2 1 2 2 5
3.2 3 2 2 2 1 5
4.2 4 2 1 2 2 4
5.2 5 2 2 2 1 4
6.2 6 2 2 1 1 2
1.3 1 3 2 1 2 3
2.3 2 3 2 2 1 5
3.3 3 3 1 1 2 2
4.3 4 3 1 2 2 5
5.3 5 3 2 1 1 4
6.3 6 3 1 1 1 5
> head(x.long)
.id pio caremgmt prev price surveyNum
1 1 2 2 1 2 1
2 1 2 1 2 1 2
3 1 1 1 2 2 3
4 1 2 2 1 5 4
5 1 1 1 1 3 5
6 1 1 2 2 4 6
> head(reshapeasy( x.long, direction="wide", id="surveyNum", vary=".id" ))
surveyNum pio.1 caremgmt.1 prev.1 price.1 pio.3 caremgmt.3 prev.3 price.3 pio.2 caremgmt.2 prev.2 price.2
1 1 2 2 1 2 2 1 2 3 2 1 2 6
2 2 2 1 2 1 2 2 1 5 1 2 2 5
3 3 1 1 2 2 1 1 2 2 2 2 1 5
4 4 2 2 1 5 1 2 2 5 1 2 2 4
5 5 1 1 1 3 2 1 1 4 2 2 1 4
6 6 1 2 2 4 1 1 1 5 2 1 1 2