I got this when using keras with Tensorflow backend:
tensorflow.python.framework.errors_impl.InvalidArgumentError: device CUDA:0 not supported by XLA service
while setting up XLA_GPU_JIT device number 0
Relevant code:
tfconfig = tf.ConfigProto()
tfconfig.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
tfconfig.gpu_options.allow_growth = True
K.tensorflow_backend.set_session(tf.Session(config=tfconfig))
tensorflow version: 1.14.0
This could be due to your TF-default (i.e. 1st) GPU is running out of memory. If you have multiple GPUs, divert your Python program to run on other GPUs. In TF (suppose using TF-2.0-rc1), set the following:
# Specify which GPU(s) to use
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # Or 2, 3, etc. other than 0
# On CPU/GPU placement
config = tf.compat.v1.ConfigProto(allow_soft_placement=True, log_device_placement=True)
config.gpu_options.allow_growth = True
tf.compat.v1.Session(config=config)
# Note that ConfigProto disappeared in TF-2.0
Suppose, however, your environment have only one GPU, then perhaps you have no choice but ask your buddy to stop his program, then treat him a cup of coffee.
Chairman Guo's code:
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
solved my problem of jupyter notebook kernel crashing at:
tf.keras.models.load_model(path/to/my/model)
The fatal message was:
2020-01-26 11:31:58.727326: F
tensorflow/stream_executor/lib/statusor.cc:34] Attempting to fetch
value instead of handling error Internal: failed initializing
StreamExecutor for CUDA device ordinal 0: Internal: failed call to
cuDevicePrimaryCtxRetain: CUDA_ERROR_UNKNOWN: unknown error
My TF's version is: 2.2.0-dev20200123. There are 2 GPUs on this system.