Background
I am doing parallel operations on rows and columns in images. My images are 8 bit or 16 bit pixels and I'm on a 64 bit machine.
When I do operations on columns in parallel, two adjacent columns may share the same 32 bit int
or 64 bit long
. Basically, I want to know whether I can safely operate on individual bytes of the same quadword in parallel.
Minimal Test
I wrote a minimal test function that I have not been able to make fail. For each byte in a 64 bit long
, I concurrently perform successive multiplications in a finite field of order p
. I know that by Fermat's little theorem a^(p-1) = 1 mod p
when p
is prime. I vary the values a
and p
for each of my 8 threads, and I perform k*(p-1)
multiplications of a
. When the threads finish each byte should be 1. And in fact, my test cases pass. Each time I run, I get the following output:
8
101010101010101
101010101010101
My system is Linux 4.13.0-041300-generic x86_64 with an 8 core Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz. I compiled with g++ 7.2.0 -O2 and examined the assembly. I added the assembly for the "INNER LOOP" and commented it. It seems to me that the code generated is safe because the stores are only writing the lower 8 bits to the destination instead of doing some bitwise arithmetic and storing to the entire word or quadword. g++ -O3 generated similar code.
Question:
I want to know if this code is always thread-safe, and if not, in what conditions would it not be. Maybe I am being very paranoid, but I feel that I would need to operate on quadwords at a time in order to be safe.
#include <iostream>
#include <pthread.h>
class FermatLTParams
{
public:
FermatLTParams(unsigned char *_dst, unsigned int _p, unsigned int _a, unsigned int _k)
: dst(_dst), p(_p), a(_a), k(_k) {}
unsigned char *dst;
unsigned int p, a, k;
};
void *PerformFermatLT(void *_p)
{
unsigned int j, i;
FermatLTParams *p = reinterpret_cast<FermatLTParams *>(_p);
for(j=0; j < p->k; ++j)
{
//a^(p-1) == 1 mod p
//...BEGIN INNER LOOP
for(i=1; i < p->p; ++i)
{
p->dst[0] = (unsigned char)(p->dst[0]*p->a % p->p);
}
//...END INNER LOOP
/* gcc 7.2.0 -O2 (INNER LOOP)
.L4:
movq (%rdi), %r8 # r8 = dst
xorl %edx, %edx # edx = 0
addl $1, %esi # ++i
movzbl (%r8), %eax # eax (lower 8 bits) = dst[0]
imull 12(%rdi), %eax # eax = a * eax
divl %ecx # eax = eax / ecx; edx = eax % ecx
movb %dl, (%r8) # dst[0] = edx (lower 8 bits)
movl 8(%rdi), %ecx # ecx = p
cmpl %esi, %ecx # if (i < p)
ja .L4 # goto L4
*/
}
return NULL;
}
int main(int argc, const char **argv)
{
int i;
unsigned long val = 0x0101010101010101; //a^0 = 1
unsigned int k = 10000000;
std::cout << sizeof(val) << std::endl;
std::cout << std::hex << val << std::endl;
unsigned char *dst = reinterpret_cast<unsigned char *>(&val);
pthread_t threads[8];
FermatLTParams params[8] =
{
FermatLTParams(dst+0, 11, 5, k),
FermatLTParams(dst+1, 17, 8, k),
FermatLTParams(dst+2, 43, 3, k),
FermatLTParams(dst+3, 31, 4, k),
FermatLTParams(dst+4, 13, 3, k),
FermatLTParams(dst+5, 7, 2, k),
FermatLTParams(dst+6, 11, 10, k),
FermatLTParams(dst+7, 13, 11, k)
};
for(i=0; i < 8; ++i)
{
pthread_create(threads+i, NULL, PerformFermatLT, params+i);
}
for(i=0; i < 8; ++i)
{
pthread_join(threads[i], NULL);
}
std::cout << std::hex << val << std::endl;
return 0;
}