可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I'm trying to plot the angle of an object (let's say it's a weather vane) over time. I want to plot it on a polar coordinate system and have the time points be connected by a path, showing how the angle evolves over time. I simply have a dataframe, with one column being the angle in degrees (numeric) and then the time step when the angle was recorded (integer).
But when I run the below code:
ggplot(df, aes(x = angle.from.ref, y = time.step)) +
coord_polar() +
geom_path() +
geom_point() +
scale_x_continuous(limits = c(0, 360), breaks = seq(0, 360, 45))
I get something that looks like this:
The path created by geom_path()
refuses to cross the 0/360 degree line. If a value of 359 is followed by a value of 1, the path will not create a short link passing across the x=0/360 point. Instead, the path curves back ALL the way around the circle, arriving at x=1 from the other side.
I had hoped using coord_polar()
would have solved this, but clearly not. Is there some way I can tell ggplot
that the values 0 and 360 are adjacent/contiguous?
回答1:
It may be more straightforward to bypass the crossing-over problem: interpolate at the 360/0 point, and plot each revolution as its own section. Here's how it can work:
library(dplyr)
library(ggplot2)
# sample data
n <- 100
df <- data.frame(
angle.from.ref = seq(0, 800, length.out = n),
time.step = seq(Sys.time(), by = "min", length.out = n)
)
df %>%
interpolate.revolutions() %>%
ggplot(aes(x = angle.from.ref, y = time.step,
group = revolution)) +
geom_line(aes(color = factor(revolution)), size = 1) + # color added for illustration
scale_x_continuous(limits = c(0, 360),
breaks = seq(0, 360, 45)) +
coord_polar()
Code for interpolate.revolutions
function:
interpolate.revolutions <- function(df, threshold = 360){
# where df is a data frame with angle in the first column & radius in the second
res <- df
# add a label variable such that each span of 360 degrees belongs to
# a different revolution
res$revolution <- res[[1]] %/% threshold
# keep only the angle values within [0, 360 degrees]
res[[1]] <- res[[1]] %% threshold
# if there are multiple revolutions (i.e. the path needs to cross the 360/0 threshold),
# calculate interpolated values & add them to the data frame
if(n_distinct(res$revolution) > 1){
split.res <- split(res, res$revolution)
res <- split.res[[1]]
for(i in seq_along(split.res)[-1]){
interp.res <- rbind(res[res[[2]] == max(res[[2]]), ],
split.res[[i]][split.res[[i]][[2]] == min(split.res[[i]][[2]]), ])
interp.res[[2]] <- interp.res[[2]][[1]] +
(threshold - interp.res[[1]][1]) /
(threshold - interp.res[[1]][1] + interp.res[[1]][2]) *
diff(interp.res[[2]])
interp.res[[1]] <- c(threshold, 0)
res <- rbind(res, interp.res, split.res[[i]])
}
}
return(res)
}
This approach can be applied to multiple lines in a plot as well. Just apply the function separately to each line:
# sample data for two lines, for different angle values taken at different time points
df2 <- data.frame(
angle.from.ref = c(seq(0, 800, length.out = 0.75 * n),
seq(0, 1500, length.out = 0.25 * n)),
time.step = c(seq(Sys.time(), by = "min", length.out = 0.75 * n),
seq(Sys.time(), by = "min", length.out = 0.25 * n)),
line = c(rep(1, 0.75*n), rep(2, 0.25*n))
)
df2 %>%
tidyr::nest(-line) %>%
mutate(data = purrr::map(data, interpolate.revolutions)) %>%
tidyr::unnest() %>%
ggplot(aes(x = angle.from.ref, y = time.step,
group = interaction(line, revolution),
color = factor(line))) +
geom_line(size = 1) +
scale_x_continuous(limits = c(0, 360),
breaks = seq(0, 360, 45)) +
coord_polar()
回答2:
Ok my implementation is a bit hacky, but it might solve your problem. The idea is to simply implement a version of geom_point() that draws lines instead of points.
First, we'll need to build a ggproto
object that inherits from GeomPoint
and modify the way it draws panels. If you look at GeomPoint$draw_panel
, you'll see that our function is virtually the same, but we're using polylineGrob()
instead of pointsGrob()
.
GeomPolarPath <- ggproto(
"GeomPolarPath", GeomPoint,
draw_panel = function(data, panel_params, coord, na.rm = FALSE){
coords <- coord$transform(data, panel_params)
ggplot2:::ggname(
"geom_polarpath",
polylineGrob(coords$x, coords$y,
gp = grid::gpar(col = alpha(coords$colour, coords$alpha),
fill = alpha(coords$fill, coords$alpha),
fontsize = coords$size * .pt + coords$stroke * .stroke/2,
lwd = coords$stroke * .stroke/2))
)
}
)
Now that we have that, we just need to write the usual function for geoms to accept this in layers. Again, this does the same thing as geom_point()
, but passes GeomPolarPath
instead of GeomPoints
to the layer.
geom_polarpath <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ..., na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE)
{
layer(data = data, mapping = mapping, stat = stat, geom = GeomPolarPath,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...))
}
Finally, we can happily plot away all we want (blatantly stealing dww's example data):
ggplot(df, aes(x = angle, y = time.step)) +
coord_polar() +
geom_polarpath() +
geom_point() +
scale_x_continuous(limits = c(0, 360), breaks = seq(0, 360, 45))
And here we go. I've only tested this for this particular plot, so I would expect some bugs and wierdness along the way. Potential downside is that it draws straight lines between points, so it doesn't curve along the angles. Good luck!
EDIT: You might need to load the grid package for this to work.
回答3:
It may be simpler to calculate your own polar coordinates, and plot on a cartesian grid.
Some dummy data (where all angles are less than 360, but with data points crossing the 360/0 boundary, as described in the comment)
df = data.frame(angle.from.ref = rep(seq(0,350,10), 4))
df$time.step = seq_along(df$angle.from.ref)
Now we use basic trig to calculate the position on a cartesian plane:
df$x = sin(pi * df$angle.from.ref/180) * df$time.step
df$y = cos(pi * df$angle.from.ref/180) * df$time.step
and plot using geom_path
ggplot(df, aes(x, y)) +
geom_path() +
geom_point() +
coord_equal()
To replace the cartesian grid with a polar one, we can also calculate the coordinates for the gridlines (I put into a function for convenience)
ggpolar = function(theta, r) {
# convert polar coordinates to cartesian
x = sin(pi * theta/180) * r
y = cos(pi * theta/180) * r
# generate polar gridlines in cartesian (x,y) coordinates
max.r = ceiling(max(r) / 10) * 10
grid.a = data.frame(a = rep(seq(0, 2*pi, length.out = 9)[-1], each=2))
grid.a$x = c(0, max.r) * sin(grid.a$a)
grid.a$y = c(0, max.r) * cos(grid.a$a)
circle = seq(0, 2*pi, length.out = 361)
grid.r = data.frame(r = rep(seq(0, max.r, length.out = 4)[-1], each=361))
grid.r$x = sin(circle) * grid.r$r
grid.r$y = cos(circle) * grid.r$r
labels = data.frame(
theta = seq(0, 2*pi, length.out = 9)[-1],
lab = c(seq(0,360,length.out = 9)[-c(1,9)], "0/360"))
labels$x = sin(labels$theta) *max.r*1.1
labels$y = cos(labels$theta) *max.r*1.1
#plot
ggplot(data.frame(x,y), aes(x, y)) +
geom_line(aes(group=factor(a)), data = grid.a, color='grey') +
geom_path(aes(group=factor(r)), data = grid.r, color='grey') +
geom_path() +
geom_point() +
coord_equal() +
geom_text(aes(x,y,label=lab), data=labels) +
theme_void()
}
ggpolar(df$angle.from.ref, df$time.step)
Also, demonstrating the same with data similar to your example that oscillates across the 360/0 line:
set.seed(1234)
df = data.frame(angle = (360 + cumsum(sample(-25:25,20,T))) %% 360)
df$time.step = seq_along(df$angle)
ggpolar(df$angle, df$time.step)
Edit: A slightly more complex version that draws curved lines
One issue with the above solution is that the line segments are straight, rather than curved along the angles. Here's a slightly improved version that draws either spline or polar curves between the points using method='spline'
or method='approx'
, respectively.
plus360 = function(a) {
# adds 360 degrees every time angle crosses 360 degrees in positive direction.
# and subtracts 360 for crossings in negative direction
a = a %% 360
n = length(a)
up = a[-n] > 270 & a[-1] < 90
down = a[-1] > 270 & a[-n] < 90
a[-1] = a[-1] + 360* (cumsum(up) - cumsum(down))
a
}
ggpolar = function(theta, r, method='linear') {
# convert polar coordinates to cartesian
x = sin(pi * theta/180) * r
y = cos(pi * theta/180) * r
p = data.frame(x,y)
if (method=='spline') {
sp = as.data.frame(spline(r,plus360(theta),10*length(r)))
} else {
if (method=='approx') {
sp = as.data.frame(approx(r,plus360(theta),n=10*length(r)))
} else {
sp = data.frame(x=r, y=theta)
}
}
l = data.frame(
x = sin(pi * sp$y/180) * sp$x,
y = cos(pi * sp$y/180) * sp$x)
# generate polar gridlines in cartesian (x,y) coordinates
max.r = ceiling(max(r) / 10) * 10
grid.a = data.frame(a = rep(seq(0, 2*pi, length.out = 9)[-1], each=2))
grid.a$x = c(0, max.r) * sin(grid.a$a)
grid.a$y = c(0, max.r) * cos(grid.a$a)
circle = seq(0, 2*pi, length.out = 361)
grid.r = data.frame(r = rep(seq(0, max.r, length.out = 4)[-1], each=361))
grid.r$x = sin(circle) * grid.r$r
grid.r$y = cos(circle) * grid.r$r
labels = data.frame(
theta = seq(0, 2*pi, length.out = 9)[-1],
lab = c(seq(0,360,length.out = 9)[-c(1,9)], "0/360"))
labels$x = sin(labels$theta) *max.r*1.1
labels$y = cos(labels$theta) *max.r*1.1
#plot
ggplot(mapping = aes(x, y)) +
geom_line(aes(group=factor(a)), data = grid.a, color='grey') +
geom_path(aes(group=factor(r)), data = grid.r, color='grey') +
geom_path(data = l) +
geom_point(data = p) +
coord_equal() +
geom_text(aes(x,y,label=lab), data=labels) +
theme_void()
}
using splines it looks like this
ggpolar(df$angle, df$time.step, method = 'spline')
and with polar curves which interpolate the angle
ggpolar(df$angle, df$time.step, method = 'approx')
回答4:
I'm sorry for coming back to this a year later, but I think I found a simpler solution than all of the above, including my own. So if anybody revisits this question because they have a similar problem, they'll find this answer.
Since scales v1.1.1, there is the oob_keep()
function that you can pass as oob
argument to a scale. What this does, is basically the same as setting the limits in coord_cartesian()
, but it works for polar coordinates as well.
While this doesn't automatically pre-wrangle your data, as long as the input data is correctly centered around a phase start, it should work.
For example:
library(ggplot2)
set.seed(1234)
df <- data.frame(angle = (360 + cumsum(sample(-25:25,20,T))))
ggplot(df, aes(angle, seq_along(angle))) +
geom_point() +
geom_path() +
scale_x_continuous(limits = c(0, 360),
oob = scales::oob_keep,
breaks = seq(0, 360, length.out = 9)) +
coord_polar()
And for the spiral example:
library(ggplot2)
spiral <- data.frame(x = seq(0, 360*3, length.out = 500))
ggplot(spiral, aes(x, x)) +
geom_point() +
geom_path() +
scale_x_continuous(limits = c(0, 360),
oob = scales::oob_keep) +
coord_polar()