I'm working on a multiclass classification problem using python and scikit-learn. Currently, I'm using the classification_report
function to evaluate the performance of my classifier, obtaining reports like the following:
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
avg / total 0.70 0.60 0.61 5
To do further analysis, I'm interesting in obtaining the per-class f1 score of each of the classes available. Maybe something like this:
>>> print(calculate_f1_score(y_true, y_pred, target_class='class 0'))
0.67
Is there something like that available on scikit-learn?
Taken from the f1_score
docs.
from sklearn.metrics import f1_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
f1_score(y_true, y_pred, average=None)
Ouputs:
array([ 0.8, 0. , 0. ])
Which is the scores for each class.
If you only have the confusion matrix C
, with rows corresponding to predictions and columns corresponding to truth, you can compute F1 score using the following function:
def f1(C):
num_classes = np.shape(C)[0]
f1_score = np.zeros(shape=(num_classes,), dtype='float32')
weights = np.sum(C, axis=0)/np.sum(C)
for j in range(num_classes):
tp = np.sum(C[j, j])
fp = np.sum(C[j, np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
fn = np.sum(C[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), j])
# tn = np.sum(C[np.concatenate((np.arange(0, j), np.arange(j+1, num_classes))), np.concatenate((np.arange(0, j), np.arange(j+1, num_classes)))])
precision = tp/(tp+fp) if (tp+fp) > 0 else 0
recall = tp/(tp+fn) if (tp+fn) > 0 else 0
f1_score[j] = 2*precision*recall/(precision + recall)*weights[j] if (precision + recall) > 0 else 0
f1_score = np.sum(f1_score)
return f1_score