I have retrained my model with tensorflow for poets inception model. It takes 0.4 seconds for predictions and 2 seconds for sorting. Since it takes a so long time, the frame is laggy and it is scrambled while predicting. Is there by any means that I can make frame smooth though the prediction takes time? Following is my code...
camera = cv2.VideoCapture(0)
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile('retrained_labels.txt')]
def grabVideoFeed():
grabbed, frame = camera.read()
return frame if grabbed else None
def initialSetup():
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
start_time = timeit.default_timer()
# This takes 2-5 seconds to run
# Unpersists graph from file
with tf.gfile.FastGFile('retrained_graph.pb', 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
print 'Took {} seconds to unpersist the graph'.format(timeit.default_timer() - start_time)
initialSetup()
with tf.Session() as sess:
start_time = timeit.default_timer()
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
print 'Took {} seconds to feed data to graph'.format(timeit.default_timer() - start_time)
while True:
frame = grabVideoFeed()
if frame is None:
raise SystemError('Issue grabbing the frame')
frame = cv2.resize(frame, (299, 299), interpolation=cv2.INTER_CUBIC)
cv2.imshow('Main', frame)
# adhere to TS graph input structure
numpy_frame = np.asarray(frame)
numpy_frame = cv2.normalize(numpy_frame.astype('float'), None, -0.5, .5, cv2.NORM_MINMAX)
numpy_final = np.expand_dims(numpy_frame, axis=0)
start_time = timeit.default_timer()
# This takes 2-5 seconds as well
predictions = sess.run(softmax_tensor, {'Mul:0': numpy_final})
print 'Took {} seconds to perform prediction'.format(timeit.default_timer() - start_time)
start_time = timeit.default_timer()
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
print 'Took {} seconds to sort the predictions'.format(timeit.default_timer() - start_time)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
print '********* Session Ended *********'
if cv2.waitKey(1) & 0xFF == ord('q'):
sess.close()
break
camera.release()
cv2.destroyAllWindows()