I am trying to compute precision and recall for two sets of keywords. The gold_standard
has 823 terms and the test
has 1497 terms.
Using nltk.metrics
's version of precision
and recall
, I am able to provide the two sets just fine. But doing the same for Scikit is throwing me an error:
ValueError: Found arrays with inconsistent numbers of samples: [ 823 1497]
How do I resolve this?
#!/usr/bin/python3
from nltk.metrics import precision, recall
from sklearn.metrics import precision_score
from sys import argv
from time import time
import numpy
import csv
def readCSVFile(filename):
termList = set()
with open(filename, 'rt', encoding='utf-8') as f:
reader = csv.reader(f)
for row in reader:
termList.update(row)
return termList
def readDocuments(gs_file, fileToProcess):
print("Reading CSV files...")
gold_standard = readCSVFile(gs_file)
test = readCSVFile(fileToProcess)
print("All files successfully read!")
return gold_standard, test
def calcPrecisionScipy(gs, test):
gs = numpy.array(list(gs))
test = numpy.array(list(test))
print("Precision Scipy: ",precision_score(gs, test, average=None))
def process(datasest):
print("Processing input...")
gs, test = dataset
print("Precision: ", precision(gs, test))
calcPrecisionScipy(gs, test)
def usage():
print("Usage: python3 generate_stats.py gold_standard.csv termlist_to_process.csv")
if __name__ == '__main__':
if len(argv) != 3:
usage()
exit(-1)
t0 = time()
process(readDocuments(argv[1], argv[2]))
print("Total runtime: %0.3fs" % (time() - t0))
I referred to the following pages for coding:
- http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
- http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html#sklearn.metrics.precision_score
=================================Update===================================
Okay, so I tried to add 'non-sensical' data to the list to make them equal length:
def calcPrecisionScipy(gs, test):
if len(gs) < len(test):
gs.update(list(range(len(test)-len(gs))))
gs = numpy.array(list(gs))
test = numpy.array(list(test))
print("Precision Scipy: ",precision_score(gs, test, average=None))
Now I have another error:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.