I am trying to find the minimum distance from a point (x0,y0,z0) to a line joined by (x1,y1,z1) and (x2,y2,z2) using numpy or anything in python. Unfortunately, all i can find on the net is related to 2d spaces and i am fairly new to python. Any help will be appreciated. Thanks in advance!
问题:
回答1:
StackOverflow doesn't support Latex, so I'm going to gloss over some of the math. One solution comes from the idea that if your line spans the points p
and q
, then every point on that line can be represented as t*(p-q)+q
for some real-valued t
. You then want to minimize the distance between your given point r
and any point on that line, and distance is conveniently a function of the single variable t
, so standard calculus tricks work fine. Consider the following example, which calculates the minimum distance between r
and the line spanned by p
and q
. By hand, we know the answer should be 1
.
import numpy as np
p = np.array([0, 0, 0])
q = np.array([0, 0, 1])
r = np.array([0, 1, 1])
def t(p, q, r):
x = p-q
return np.dot(r-q, x)/np.dot(x, x)
def d(p, q, r):
return np.linalg.norm(t(p, q, r)*(p-q)+q-r)
print(d(p, q, r))
# Prints 1.0
This works fine in any number of dimensions, including 2, 3, and a billion. The only real constraint is that p
and q
have to be distinct points so that there is a unique line between them.
I broke the code down in the above example in order to show the two distinct steps arising from the way I thought about it mathematically (finding t
and then computing the distance). That isn't necessarily the most efficient approach, and it certainly isn't if you want to know the minimum distance for a wide variety of points and the same line -- doubly so if the number of dimensions is small. For a more efficient approach, consider the following:
import numpy as np
p = np.array([0, 0, 0]) # p and q can have shape (n,) for any
q = np.array([0, 0, 1]) # n>0, and rs can have shape (m,n)
rs = np.array([ # for any m,n>0.
[0, 1, 1],
[1, 0, 1],
[1, 1, 1],
[0, 2, 1],
])
def d(p, q, rs):
x = p-q
return np.linalg.norm(
np.outer(np.dot(rs-q, x)/np.dot(x, x), x)+q-rs,
axis=1)
print(d(p, q, rs))
# Prints array([1. , 1. , 1.41421356, 2. ])
There may well be some simplifications I'm missing or other things that could speed that up, but it should be a good start at least.
回答2:
This duplicates @Hans Musgrave solution, but imagine we know nothing of 'standard calculus tricks' that 'work fine' and also very bad at linear algebra.
All we know is:
- how to calculate a distance between two points
- a point on line can be represented as a function of two points and a paramater
- we know find a function minimum
(lists are not friends with code blocks)
def distance(a, b):
"""Calculate a distance between two points."""
return np.linalg.norm(a-b)
def line_to_point_distance(p, q, r):
"""Calculate a distance between point r and a line crossing p and q."""
def foo(t: float):
# x is point on line, depends on t
x = t * (p-q) + q
# we return a distance, which also depends on t
return distance(x, r)
# which t minimizes distance?
t0 = sci.optimize.minimize(foo, 0.1).x[0]
return foo(t0)
# in this example the distance is 5
p = np.array([0, 0, 0])
q = np.array([2, 0, 0])
r = np.array([1, 5, 0])
assert abs(line_to_point_distance(p, q, r) - 5) < 0.00001
You should not use this method for real calculations, because it uses approximations wher eyou have a closed form solution, but maybe it helpful to reveal some logic begind the neighbouring answer.