I am new to programming, but have looked at my code over and over and can't see any mistakes. I don't know how proceed any more because this error pops up no matter what I try. I'll post the full code here.
Any help would be much appreciated, thank you!
import nltk
import random
from nltk.corpus import movie_reviews
import pickle
from nltk.classify.scikitlearn import SklearnClassifier
from sklearn.naive_bayes import MultinomialNB,BernoulliNB
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC
from nltk.classify import ClassifierI
from statistics import mode
class VoteClassifier(ClassifierI):
def __init__(self, *classifiers):
self._classifiers = classifiers
def classify(self, features):
votes = []
for c in self._classifiers:
v = c.classify(features)
votes.append(v)
return mode(votes)
def confidence(self, features):
votes = []
for c in self._classifiers:
v = c.classify(features)
votes.append(v)
choice_votes = votes.count(mode(votes))
conf = choice_votes / len(votes)
return conf
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
random.shuffle(documents)
all_words = []
for w in movie_reviews.words():
all_words.append(w.lower())
all_words = nltk.FreqDist(all_words)
word_features = list(all_words.keys())[:3000]
def find_features(document):
words = set(document)
features = {}
for w in word_features:
features[w] = (w in words)
return features
featuresets = [(find_features(rev), category) for (rev, category) in documents]
training_set = featuresets[:1900]
testing_set = featuresets[1900:]
# classifier = nltk.NaiveBayesClassifier.train(training_set)
classifier_f = open("naivebayes.pickle", "rb")
classifier = pickle.load(classifier_f)
classifier_f.close()
print("Original NaiveBayes accuracy percent:",(nltk.classify.accuracy(classifier, testing_set))*100)
classifier.show_most_informative_features(10)
MNB_classifier = SklearnClassifier(MultinomialNB())
MNB_classifier.train(training_set)
print("MNB_classifier accuracy percent:", (nltk.classify.accuracy(MNB_classifier, testing_set))*100)
BernoulliNB_classifier = SklearnClassifier(BernoulliNB())
BernoulliNB_classifier.train(training_set)
print("BernoulliNB_classifier accuracy percent:", (nltk.classify.accuracy(BernoulliNB_classifier, testing_set))*100)
LogisticRegression_classifier = SklearnClassifier(LogisticRegression())
LogisticRegression_classifier.train(training_set)
print("LogisticRegression_classifier accuracy percent:", (nltk.classify.accuracy(LogisticRegression_classifier, testing_set))*100)
SGDClassifier_classifier = SklearnClassifier(SGDClassifier())
SGDClassifier_classifier.train(training_set)
print("SGDClassifier_classifier accuracy percent:", (nltk.classify.accuracy(SGDClassifier_classifier, testing_set))*100)
##SVC_classifier = SklearnClassifier(SVC())
##SVC_classifier.train(training_set)
##print("SVC_classifier accuracy percent:", (nltk.classify.accuracy(SVC_classifier, testing_set))*100)
LinearSVC_classifier = SklearnClassifier(LinearSVC())
LinearSVC_classifier.train(training_set)
print("LinearSVC_classifier accuracy percent:", (nltk.classify.accuracy(LinearSVC_classifier, testing_set))*100)
NuSVC_classifier = SklearnClassifier(NuSVC())
NuSVC_classifier.train(training_set)
print("NuSVC_classifier accuracy percent:", (nltk.classify.accuracy(NuSVC_classifier, testing_set))*100)
voted_classifier = VoteClassifier(classifier,
NuSVC_classifier,
LinearSVC_classifier,
SGDClassifier_classifier,
MNB_classifier,
BernoulliNB_classifier,
LogisticRegression_classifier)
print("voted_classifier accuracy percent:", (nltk.classify.accuracy(voted_classifier, testing_set))*100)
I also tried raising a NotImplementedError exception on the class at the top but it did not change the output in Python.
This is the error:
Traceback (most recent call last):
File "code/test.py", line 109, in <module>
print("voted_classifier accuracy percent:", (nltk.classify.accuracy(voted_classifier, testing_set))*100)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/nltk/classify/util.py", line 87, in accuracy
results = classifier.classify_many([fs for (fs, l) in gold])
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/nltk/classify/api.py", line 77, in classify_many
return [self.classify(fs) for fs in featuresets]
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/nltk/classify/api.py", line 56, in classify
raise NotImplementedError()
NotImplementedError