I need some help tidying my data. I'm trying to convert some integers to factors (but not all integers to factors). I think I can do with selecting the variables in question but how do I add them back to the original data set? For example, keeping the values NOT selected from my raw_data_tbl and using the mutated types from the raw_data_tbl_int
library(dplyr)
raw_data_tbl %>%
select_if(is.numeric) %>%
select(-c(contains("units"), PRO_ALLOW, RTL_ACTUAL, REAL_PRICE,
REAL_PRICE_HHU, REBATE, RETURN_UNITS, UNITS_PER_CASE, Profit, STR_COST, DCC,
CREDIT_AMT)) %>%
mutate_if(is.numeric, as.factor)
You can use mutate_at
instead. Here's an example using the iris
dataframe:
library(dplyr)
iris_factor <- iris %>%
mutate_at(vars(Sepal.Width,
Sepal.Length),
funs(factor))
And the proof:
> str(iris_factor)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: Factor w/ 35 levels "4.3","4.4","4.5",..: 9 7 5 4 8 12 4 8 2 7 ...
$ Sepal.Width : Factor w/ 23 levels "2","2.2","2.3",..: 15 10 12 11 16 19 14 14 9 11 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
Honestly, I'd do it like this:
library(dplyr)
df = data.frame("LOC_ID" = c(1,2,3,4),
"STRS" = c("a","b","c","d"),
"UPC_CDE" = c(813,814,815,816))
df$LOC_ID = as.factor(df$LOC_ID)
df$UPC_CDE = as.factor(df$UPC_CDE)