I have this pandas dataframe with column "Code" that contains the sequential hierarchical code. My goal is to create new columns with each hierarchical level code and its name as followed:
Original data:
Code Name
0 A USA
1 AM Massachusetts
2 AMB Boston
3 AMS Springfield
4 D Germany
5 DB Brandenburg
6 DBB Berlin
7 DBD Dresden
My Goal:
Code Name Level1 Level1Name Level2 Level2Name Level3 Level3Name
0 A USA A USA AM Massachusetts AMB Boston
1 AM Massachusetts A USA AM Massachusetts AMB Boston
2 AMB Boston A USA AM Massachusetts AMB Boston
3 AMS Springfield A USA AM Massachusetts AMS Springfiled
4 D Germany D Germany DB Brandenburg DBB Berlin
5 DB Brandenburg D Germany DB Brandenburg DBB Berlin
6 DBB Berlin D Germany DB Brandenburg DBB Berlin
7 DBD Dresden D Germany DB Brandenburg DBD Dresden
My Code:
import pandas as pd
df = pd.read_excel(r'/Users/BoBoMann/Desktop/Sequence.xlsx')
df['Length']=test.Code.str.len() ## create a column with length of each cell in Code
df['Level1']=test.Code.str[:1] ## create the first level using string indexing
df['Level1Name'] = df[df['Length']==1]['Name']
df.head() ## This yields:
Code Name Length Level1 Level1Name
0 A USA 1 A USA
1 AM Massachusetts 2 A NaN
2 AMB Boston 3 A NaN
3 AMS Springfield 3 A NaN
4 D Germany 1 D Germany
5 DB Brandenburg 2 D NaN
6 DBB Berlin 3 D NaN
7 DBD Dresden 3 D NaN
For my current approach, how do I turn those NaN into USA and Germany respectively in Level1Name column?
Generally, is there a better approach to reach my goal of creating columns for each hierarchical layer and match them with their respective name in another column?