I am searching for alternatives to the FFT to create a spectrogram analyser in python. I heard that the wavelet transform is faster and provides better time accuracy than the short time FFT. I went in this wikipedia article that features the Haar wavelet transform implementation in Java:
https://en.wikipedia.org/wiki/Discrete_wavelet_transform#Code_example
I brutally converted it to python but I have no idea if the values I'm getting are correct. Can someone confirm?
from math import *
N = 8
res = [sin(k) for k in xrange(N)]
for k in xrange(N):
print res[k]
print
def discreteHaarWaveletTransform(x):
N = len(x)
output = [0.0]*N
length = N >> 1
while True:
for i in xrange(0,length):
summ = x[i * 2] + x[i * 2 + 1]
difference = x[i * 2] - x[i * 2 + 1]
output[i] = summ
output[length + i] = difference
if length == 1:
return output
#Swap arrays to do next iteration
#System.arraycopy(output, 0, x, 0, length << 1)
x = output[:length << 1]
length >>= 1
res = discreteHaarWaveletTransform(res)
for k in xrange(N):
print res[k]
Result:
0.0
0.841470984808
0.909297426826
0.14112000806
-0.756802495308
-0.958924274663
-0.279415498199
0.656986598719
0.553732750242
3.23004408914
-0.208946450078
-2.09329787049
-0.841470984808
0.768177418766
0.202121779355
-0.936402096918