I had coded the 80c51 architecture in VHDL using xilinx. In an attempt to increase the clock frequency, I had pipelined all the 80c51 instructions. The instructions were able to execute as desired, for eg. when the 1st instruction is being processed, the second instruction gets fetched.
However, I only get a slightly higher clock frequency of (around +/-10Hz) despite creating a pipeline depth of 3, from the synthesis report. I figured out that the bottleneck is due to one operation as specified by the synthesis report, but I could not understand synthesis report.
May I ask what is the data path from 'SEQ/decode_3 to SEQ/i_ram_addr_7' trying to do? (From my guess, i deduce that the use a case, when statement to check the 100+ relevant opcode but not sure if that is the bottleneck. But I am clueless)
Hence, my only 2 queries are:
Firstly, is it possible that pipelining does not increase the clock frequency and the testbench is the only way to explain the reduce in timing?
Secondly, how could I deduce which path in my code that is the bottleneck from 'SEQ/decode_3 to SEQ/i_ram_addr_7'.
Thank you for anyone who can help to explain my doubts!
Timing Summary:
---------------
Speed Grade: -4
Minimum period: 12.542ns (Maximum Frequency: 79.730MHz)
Minimum input arrival time before clock: 10.501ns
Maximum output required time after clock: 5.698ns
Maximum combinational path delay: No path found
Timing Detail:
--------------
All values displayed in nanoseconds (ns)
=========================================================================
Timing constraint: Default period analysis for Clock 'clk'
Clock period: 12.542ns (frequency: 79.730MHz)
Total number of paths / destination ports: 113114 / 2670
-------------------------------------------------------------------------
Delay: 12.542ns (Levels of Logic = 10)
Source: SEQ/decode_3 (FF)
Destination: SEQ/i_ram_addr_7 (FF)
Source Clock: clk rising
Destination Clock: clk rising
Data Path: SEQ/decode_3 to SEQ/i_ram_addr_7
Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
---------------------------------------- ------------
FDC:C->Q 102 0.591 1.364 SEQ/decode_3 (SEQ/decode_3)
LUT4_D:I1->O 10 0.643 0.885 SEQ/de_state_cmp_eq002111 (N314)
LUT4:I3->O 7 0.648 0.740 SEQ/de_state_cmp_eq00711 (SEQ/de_state_cmp_eq0071)
LUT4:I2->O 3 0.648 0.534 SEQ/i_ram_addr_mux0000<0>11111 (N2301)
LUT4:I3->O 1 0.648 0.000 SEQ/i_ram_addr_mux0000<0>11270_SW0_SW0_F (N1284)
MUXF5:I0->O 1 0.276 0.423 SEQ/i_ram_addr_mux0000<0>11270_SW0_SW0 (N955)
LUT4_D:I3->O 6 0.648 0.701 SEQ/i_ram_addr_mux0000<0>11270 (SEQ/i_ram_addr_mux0000<0>11270)
LUT3_L:I2->LO 1 0.648 0.103 SEQ/i_ram_addr_mux0000<7>221_SW2_SW0 (N1208)
LUT4:I3->O 1 0.648 0.423 SEQ/i_ram_addr_mux0000<7>351_SW1 (N1085)
LUT4:I3->O 1 0.648 0.423 SEQ/i_ram_addr_mux0000<7>2 (SEQ/i_ram_addr_mux0000<7>2)
LUT4:I3->O 1 0.648 0.000 SEQ/i_ram_addr_mux0000<7>167 (SEQ/i_ram_addr_mux0000<7>)
FDE:D 0.252 SEQ/i_ram_addr_7
----------------------------------------
Total 12.542ns (6.946ns logic, 5.596ns route)
(55.4% logic, 44.6% route)
=========================================================================
Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'
Total number of paths / destination ports: 154 / 154
-------------------------------------------------------------------------
Offset: 8.946ns (Levels of Logic = 6)
Source: rst (PAD)
Destination: SEQ/i_ram_diByte_1 (FF)
Destination Clock: clk rising
Data Path: rst to SEQ/i_ram_diByte_1
Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
---------------------------------------- ------------
IBUF:I->O 444 0.849 1.392 rst_IBUF (REG/ext_int/fd_out1_0__or0000)
BUF:I->O 445 0.648 1.425 rst_IBUF_1 (rst_IBUF_1)
LUT3:I2->O 4 0.648 0.730 ROM/data<1>1 (i_rom_data<1>)
LUT4:I0->O 1 0.648 0.500 SEQ/i_ram_diByte_mux0000<1>17_SW0 (N1262)
LUT4:I1->O 1 0.643 0.563 SEQ/i_ram_diByte_mux0000<1>32 (SEQ/i_ram_diByte_mux0000<1>32)
LUT4:I0->O 1 0.648 0.000 SEQ/i_ram_diByte_mux0000<1>60 (SEQ/i_ram_diByte_mux0000<1>)
FDE:D 0.252 SEQ/i_ram_diByte_1
----------------------------------------
Total 8.946ns (4.336ns logic, 4.610ns route)
(48.5% logic, 51.5% route)
=========================================================================
To allow me to be more specfic, I will give a snipplet of an example code in the decode phase of 1 opcode.
The following is 1 such case when decoding an opdcode, which is a mov instruction. There are about 100+ opcodes (100+ instructions), which means this case statements has over 100 when statements.
case OPCODE is
--MOV A, Rn
when "11101000" | "11101001" | "11101010" | "11101011" | "11101100" | "11101101" | "11101110" | "11101111" => case de_state is when E7 =>de_state <= E8; when E8 => de_state <= E9; when E9 => de_state <= E10; when E10 => --Draw PSW i_ram_addr <= xD0; i_ram_rdByte <= '1'; de_state <= E11; when E11 => --Draw from Rn i_ram_addr <= "000" & i_ram_doByte(4 downto 3)& opcode(2 downto 0); i_ram_rdByte <= '1'; de_state <= E12; when E12 => --Place into EDR EDR <= i_ram_doByte; --close rdByte i_ram_rdByte <= '0'; when others => end case;
I hope you could have a better idea of my vhdl code. I would appreciate any form of help. Thank you!