I use matplotlib.pyplot.pcolor() to plot a heatmap with matplotlib:
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
data = np.sort(np.random.rand(8,12))
plt.figure()
c = plt.pcolor(data, edgecolors='k', linewidths=4, cmap='RdBu', vmin=0.0, vmax=1.0)
plt.colorbar(c)
plt.show()
How can I change the intensity of the 'RdBu'
colormap? E.g., if the color is (0, 0, 1)
, it should be transformed into (0, 0, 0.8)
. More generally,
if the color is (x, y, z)
, it should be transformed into (ax, ay, az)
, where a
is some scalar between zero and one.
This is quite similar to Stanley R's (edit: now Serenity) answer, without the (in my opinion) unnecessary complexity of loops, appending to lists, et cetera:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
a = 0.5
# Get the colormap colors, multiply them with the factor "a", and create new colormap
my_cmap = plt.cm.RdBu(np.arange(plt.cm.RdBu.N))
my_cmap[:,0:3] *= a
my_cmap = ListedColormap(my_cmap)
np.random.seed(1)
data = np.sort(np.random.rand(8,12))
plt.figure()
plt.subplot(121)
c = plt.pcolor(data, edgecolors='k', linewidths=4, cmap='RdBu', vmin=0.0, vmax=1.0)
plt.colorbar(c)
plt.subplot(122)
c = plt.pcolor(data, edgecolors='k', linewidths=4, cmap=my_cmap, vmin=0.0, vmax=1.0)
plt.colorbar(c)
plt.show()
You have to assembly new custom color map based on a standard.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
np.random.seed(1)
data = np.sort(np.random.rand(8,12))
plt.figure()
cmap = cm.get_cmap('RdBu', len(data)) # set how many colors you want in color map
# modify colormap
alpha = .5
colors = []
for ind in xrange(cmap.N):
c = []
for x in cmap(ind)[:3]: c.append(x*alpha)
colors.append(tuple(c))
my_cmap = matplotlib.colors.ListedColormap(colors, name = 'my_name')
# plot with my new cmap
cb = plt.pcolor(data, edgecolors='k', linewidths=4, cmap=my_cmap, vmin=0.0, vmax=1.0)
plt.colorbar(cb)
plt.show()