I've been porting a cross platform C++ engine to Android, and noticed that it will inexplicably (and inconsistently) block when calling pthread_mutex_lock. This engine has already been working for many years on several platforms, and the problematic code hasn't changed in years, so I doubt it's a deadlock or otherwise buggy code. It must be my port to Android..
So far there are several places in the code that block on pthread_mutex_lock. It isn't entirely reproducible either. When it hangs, there's no suspicious output in LogCat.
I modified the mutex code like this (edited for brevity... real code checks all return values):
void MutexCreate( Mutex* m )
{
#ifdef WINDOWS
InitializeCriticalSection( m );
#else ANDROID
pthread_mutex_init( m, NULL );
#endif
}
void MutexDestroy( Mutex* m )
{
#ifdef WINDOWS
DeleteCriticalSection( m );
#else ANDROID
pthread_mutex_destroy( m, NULL );
#endif
}
void MutexLock( Mutex* m )
{
#ifdef WINDOWS
EnterCriticalSection( m );
#else ANDROID
pthread_mutex_lock( m );
#endif
}
void MutexUnlock( Mutex* m )
{
#ifdef WINDOWS
LeaveCriticalSection( m );
#else ANDROID
pthread_mutex_unlock( m );
#endif
}
I tried modifying MutexCreate to make error-checking and recursive mutexes, but it didn't matter. I wasn't even getting errors or log output either, so either that means my mutex code is just fine, or the errors/logs weren't being shown. How exactly does the OS notify you of bad mutex usage?
The engine makes heavy use of static variables, including mutexes. I can't see how, but is that a problem? I doubt it because I modified lots of mutexes to be allocated on the heap instead, and the same behavior occurred. But that may be because I missed some static mutexes. I'm probably grasping at straws here.
I read several references including:
http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_init.html
http://www.embedded-linux.co.uk/tutorial/mutex_mutandis
http://linux.die.net/man/3/pthread_mutex_init
Android NDK Mutex
Android NDK problem pthread_mutex_unlock issue