Assuming I have the following DataFrame:
A | B
1 | Ms
1 | PhD
2 | Ms
2 | Bs
I want to remove the duplicate rows with respect to column A, and I want to retain the row with value 'PhD' in column B as the original, if I don't find a 'PhD', I want to retain the row with 'Bs' in column B.
I am trying to use
df.drop_duplicates('A')
with a condition
>>> df
A B
0 1 Ms
1 1 Ms
2 1 Ms
3 1 Ms
4 1 PhD
5 2 Ms
6 2 Ms
7 2 Bs
8 2 PhD
Sorting a dataframe with a custom function:
def sort_df(df, column_idx, key):
'''Takes a dataframe, a column index and a custom function for sorting,
returns a dataframe sorted by that column using that function'''
col = df.ix[:,column_idx]
df = df.ix[[i[1] for i in sorted(zip(col,range(len(col))), key=key)]]
return df
Our function for sorting:
cmp = lambda x:2 if 'PhD' in x else 1 if 'Bs' in x else 0
In action:
sort_df(df,'B',cmp).drop_duplicates('A', take_last=True)
A B
4 1 PhD
8 2 PhD
Assuming uniqueness of B value given A value, and that each A value has a row with Bs in the B column:
df2 = df[df['B']=="PhD"]
will give you a dataframe with the PhD rows you want.
Then remove all the PhD and Ms from df:
df = df[df['B']=="Bs"]
Then concatenate df and df2:
df3 = concat([df2, df])
Then you can use drop_duplicates like you wanted:
df3.drop_duplicates('A', inplace=True)
Consider using Categoricals
. They're a nice was to group / order text non-alphabetically (among other things.)
import pandas as pd
df = pd.DataFrame([(1,'Ms'), (1, 'PhD'), (2, 'Ms'), (2, 'Bs'), (3, 'PhD'), (3, 'Bs'), (4, 'Ms'), (4, 'PhD'), (4, 'Bs')], columns=['A', 'B'])
df['B']=df['B'].astype('category')
# after setting the column's type to 'category', you can set the order
df['B']=df['B'].cat.set_categories(['PhD', 'Bs', 'Ms'], ordered=True)
df.sort(['A', 'B'], inplace=True)
df_unique = df.drop_duplicates('A')