Assuming I am having the following dataframe:
dummy_data = [('a',1),('b',25),('c',3),('d',8),('e',1)]
df = sc.parallelize(dummy_data).toDF(['letter','number'])
And i want to create the following dataframe:
[('a',0),('b',2),('c',1),('d',3),('e',0)]
What I do is to convert it to rdd
and use zipWithIndex
function and after join the results:
convertDF = (df.select('number')
.distinct()
.rdd
.zipWithIndex()
.map(lambda x:(x[0].number,x[1]))
.toDF(['old','new']))
finalDF = (df
.join(convertDF,df.number == convertDF.old)
.select(df.letter,convertDF.new))
Is if there is something similar function as zipWIthIndex
in dataframes? Is there another more efficient way to do this task?