I have a saved model (a directory with model.pd
and variables) and wanted to run predictions on a pandas dataframe.
I've unsuccessfully tried a few ways to do this:
Attempt 1: Restore the estimator from the saved model
estimator = tf.estimator.LinearClassifier(
feature_columns=create_feature_cols(),
model_dir=path,
warm_start_from=path)
Where path is the directory that has a model.pd
and variables folder. I got an error
ValueError: Tensor linear/linear_model/dummy_feature1/weights is not found in
gs://bucket/Trainer/output/2013/20191008T170504.583379-63adee0eaee0/serving_model_dir/export/1570554483/variables/variables
checkpoint {'linear/linear_model/dummy_feature1/weights': [1, 1], 'linear/linear_model/dummy_feature2/weights': [1, 1]
}
Attempt 2: Run prediction directly from the saved model by running
imported = tf.saved_model.load(path) # path is the directory that has a `model.pd` and variables folder
imported.signatures["predict"](example)
But has not successfully passed the argument - looks like the function is looking for a tf.example and I am not sure how to convert a dataframe to tf.example. My attempt to convert is below but got an error that df[f] is not a tensor:
for f in features:
example.features.feature[f].float_list.value.extend(df[f])
I've seen solutions on stackoverflow but they are all tensorflow 1.14. Greatly appreciate if someone can help with tensorflow 2.0.