HTTP Error 999: Request denied

2020-07-10 12:20发布

问题:

I am trying to scrape some web pages from LinkedIn using BeautifulSoup and I keep getting error "HTTP Error 999: Request denied". Is there a way around to avoid this error. If you look at my code, I have tried Mechanize and URLLIB2 and both are giving me the same error.

from __future__ import unicode_literals
from bs4 import BeautifulSoup
import urllib2
import csv
import os
import re
import requests
import pandas as pd
import urlparse
import urllib
import urllib2
from BeautifulSoup import BeautifulSoup
from BeautifulSoup import BeautifulStoneSoup
import urllib
import urlparse
import pdb
import codecs
from BeautifulSoup import UnicodeDammit
import codecs
import webbrowser
from urlgrabber import urlopen
from urlgrabber.grabber import URLGrabber
import mechanize

fout5 = codecs.open('data.csv','r', encoding='utf-8', errors='replace')

for y in range(2,10,1):


    url = "https://www.linkedin.com/job/analytics-%2b-data-jobs-united-kingdom/?sort=relevance&page_num=1"

    params = {'page_num':y}

    url_parts = list(urlparse.urlparse(url))
    query = dict(urlparse.parse_qsl(url_parts[4]))
    query.update(params)

    url_parts[4] = urllib.urlencode(query)
    y = urlparse.urlunparse(url_parts)
    #print y



    #url = urllib2.urlopen(y)
    #f = urllib2.urlopen(y)

    op = mechanize.Browser() # use mecahnize's browser
    op.set_handle_robots(False) #tell the webpage you're not a robot
    j = op.open(y)
    #print op.title()


    #g = URLGrabber()
    #data = g.urlread(y)
    #data = fo.read()
    #print data

    #html = response.read()
    soup1 = BeautifulSoup(y)
    print soup1

回答1:

Try to set up User-Agent header. Add this line after op.set_handle_robots(False)

op.addheaders = [('User-Agent': "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36")]

Edit: If you want to scrape web-sites, first check if it has API or library, that deals with API.



回答2:

You should be using the LinkedIn REST API, either directly or using python-linkedin. It allows for direct access to the data, instead of attempting to scrape the JavaScript-heavy web site.