Alright, so I'm getting ready to run the tf.nn.softmax_cross_entropy_with_logits()
function in Tensorflow.
It's my understanding that the 'logits' should be a Tensor of probabilities, each one corresponding to a certain pixel's probability that it is part of an image that will ultimately be a "dog" or a "truck" or whatever... a finite number of things.
These logits will get plugged into this cross entropy equation:
As I understand it, the logits are plugged into the right side of the equation. That is, they are the q of every x (image). If they were probabilities from 0 to 1... that would make sense to me. But when I'm running my code and ending up with a tensor of logits, I'm not getting probabilities. Instead I'm getting floats that are both positive and negative:
-0.07264724 -0.15262917 0.06612295 ..., -0.03235611 0.08587133 0.01897052 0.04655019 -0.20552202 0.08725972 ..., -0.02107313 -0.00567073 0.03241089 0.06872301 -0.20756687 0.01094618 ..., etc
So my question is... is that right? Do I have to somehow calculate all my logits and turn them into probabilities from 0 to 1?