I'm in the middle of a problem where I am unable decide which solution to take.
The problem is a bit unique. Lets put it this way, i am receiving data from the network continuously (2 to 4 times per second). Now each data belongs to a different, lets say, group.
Now, lets call these groups, group1, group2 and so on.
Each group has a dedicated job queue where data from the network is filtered and added to its corresponding group for processing.
At first I created a dedicated thread per group which would take data from the job queue, process it and then goes to blocking state (using Linked Blocking Queue).
But my senior suggested that i should use thread pools because this way threads wont get blocked and will be usable by other groups for processing.
But here is the thing, the data im getting is fast enough and the time a thread takes to process it is long enough for the thread to, possibly, not go into blocking mode. And this will also guarantee that data gets processed sequentially (job 1 gets done before job 2), which in pooling, very little chances are, might not happen.
My senior is also bent on the fact that pooling will also save us lots of memory because threads are POOLED (im thinking he really went for the word ;) ). While i dont agree to this because, i personally think, pooled or not each thread gets its own stack memory. Unless there is something in thread pools which i am not aware of.
One last thing, I always thought that pooling helps where jobs appear in a big number for short time. This makes sense because thread spawning would be a performance kill because of the time taken to init a thread is lot more than time spent on doing the job. So pooling helps a lot here.
But in my case group1, group2,...,groupN always remain alive. So if there is data or not they will still be there. So thread spawning is not the issue here.
My senior is not convinced and wants me to go with the pooling solution because its memory footprint is great.
So, which path to take?
Thank you.
Good question.
Pooling indeed saves you initialization time, as you said. But it has another aspect: resource management. And here I am asking you this- just how many groups (read- dedicated threads) do you have?
do they grow dynamically during the execution span of the application?
For example, consider a situation where the answer to this question is yes. new Groups types are added dynamically. In this case, you might not want to dedicate a a thread to each one since there is technically no restrictions on the amount of groups that will be created, you will create a lot of threads and the system will be context switching instead of doing real work.
Threadpooling to the rescue- thread pool allows you to specify a restriction on the maxumal number of threads that could be possibly created, with no regard to load. So the application may deny service from certain requests, but the ones that get through are handled properly, without critically depleting the system resources.
Considering the above, I is very possible that in your case, it is very much OK to have a dedicated
thread for each group!
The same goes for your senior's conviction that it will save memory.. Indeed, a thread takes up memory on the heap, but is it really so much, if it is a predefined amount, say 5. Even 10- it is probably OK. Anyway, you should not use pooling unless you are a-priory and absolutely convinced that you actually have a problem!
Pooling is a design decision, not an architectural one. You can not-pool at the beggining and proceed with optimizations in case you find pooling to be beneficial after you encountered a performance issue.
Considering the serialization of requests (in order execution) it is no matter whether you are using a threadpool or a dedicated thread. The sequential execution is a property of the queue coupled with a single handler thread.
Creating a thread will consume resources, including the default stack per thread (IIR 512Kb, but configurable). So the advantage to pooling is that you incur a limited resource hit. Of course you need to size your pool according to the work that you have to perform.
For your particular problem, I think the key is to actually measure performance/thread usage etc. in each scenario. Unless your running into constraints I perhaps wouldn't worry either way, other than to make sure that you can swap one implementation for another without a major impact on your application. Remember that premature optimisation is the root of all evil. Note that:
"Premature optimization" is a phrase used to describe a situation
where a programmer lets performance considerations affect the design
of a piece of code. This can result in a design that is not as clean
as it could have been or code that is incorrect, because the code is
complicated by the optimization and the programmer is distracted by
optimizing.