I have a function that currently accepts 2 vectors that can contain any plain old data ...
template <class T>
void addData(const vector<T>& yData, vector<T> xData)
{ .. }
Question:
- Would it be possible to modify it to take two
std::array
or two std::vector
, or even a combination thereof, given that these containers take a different number of template arguments?
Why not just use this, which works with any container using random-access iterators, including plain old arrays. If you can use iteration instead of indexing, you can do away with the random-access requirement as well.
template <typename Cnt1, typename Cnt2>
void addData(const Cnt1& yData, Cnt2 xData) // is pass-by-value intended?
{
using std::begin;
using std::end;
typedef decltype(*begin(yData)) T;
const auto sizeY = end(yData) - begin(yData);
const auto sizeX = end(xData) - begin(xData);
// ...
}
C++03 version (doesn't support plain old arrays):
template <typename Cnt1, typename Cnt2>
void addData(const Cnt1& yData, Cnt2 xData) // is pass-by-value intended?
{
typedef Cnt1::value_type T;
const size_t sizeY = yData.end() - yData.begin();
const size_t sizeX = xData.end() - xData.begin();
// ...
}
Sure, it's just a matter of creating a suitable type trait. The example just uses a function f()
with one argument but it is trivial to extend to take any number of arguments.
#include <array>
#include <vector>
#include <deque>
#include <utility>
#include <cstddef>
template <typename T>
struct is_array_or_vector {
enum { value = false };
};
template <typename T, typename A>
struct is_array_or_vector<std::vector<T, A>> {
enum { value = true };
};
template <typename T, std::size_t N>
struct is_array_or_vector<std::array<T, N>> {
enum { value = true };
};
template <typename T>
typename std::enable_if<is_array_or_vector<T>::value>::type
f(T const&)
{
}
int main()
{
f(std::vector<int>()); // OK
f(std::array<int, 17>()); // OK
f(std::deque<int>()); // ERROR
}
An alternative solution:
#include <iostream>
#include <vector>
#include <array>
using std::vector;
using std::array;
template <typename Container>
struct container_helper; // undefined
template <typename T>
struct container_helper<vector<T>>
{
explicit container_helper(vector<T>& data)
: _data(data)
{}
T* get_data()
{ return &_data[0]; }
size_t get_size()
{ return _data.size(); }
private:
vector<T>& _data;
};
template <typename T, size_t N>
struct container_helper<array<T,N>>
{
explicit container_helper(array<T,N>& data)
: _data(data)
{}
T* get_data()
{ return &_data[0]; }
size_t get_size()
{ return N; }
private:
array<T,N>& _data;
};
template <typename Container1, typename Container2>
void add_data(Container1& c1, Container2& c2)
{
container_helper<Container1> c1_helper(c1);
container_helper<Container2> c2_helper(c2);
/* do whatever you want with the containers */
std::cout << "c1 size " << c1_helper.get_size() << std::endl;
std::cout << "c2 size " << c2_helper.get_size() << std::endl;
}
int main()
{
vector<int > v_ints(3);
array<int, 2> a_ints;
add_data(v_ints, a_ints);
}