I am writing a function, which needs a check on whether (and which!) column (variable) has all missing values (NA
, <NA>
). The following is fragment of the function:
test1 <- data.frame (matrix(c(1,2,3,NA,2,3,NA,NA,2), 3,3))
test2 <- data.frame (matrix(c(1,2,3,NA,NA,NA,NA,NA,2), 3,3))
na.test <- function (data) {
if (colSums(!is.na(data) == 0)){
stop ("The some variable in the dataset has all missing value,
remove the column to proceed")
}
}
na.test (test1)
Warning message:
In if (colSums(!is.na(data) == 0)) { :
the condition has length > 1 and only the first element will be used
Q1: Why is the above error and any fixes ?
Q2: Is there any way to find which of columns have all NA
, for example output the list (name of variable or column number)?
This is easy enough to with sapply
and a small anonymous function:
sapply(test1, function(x)all(is.na(x)))
X1 X2 X3
FALSE FALSE FALSE
sapply(test2, function(x)all(is.na(x)))
X1 X2 X3
FALSE TRUE FALSE
And inside a function:
na.test <- function (x) {
w <- sapply(x, function(x)all(is.na(x)))
if (any(w)) {
stop(paste("All NA in columns", paste(which(w), collapse=", ")))
}
}
na.test(test1)
na.test(test2)
Error in na.test(test2) : All NA in columns 2
In dplyr
ColNums_NotAllMissing <- function(df){ # helper function
as.vector(which(colSums(is.na(df)) != nrow(df)))
}
df %>%
select(ColNums_NotAllMissing(.))
example:
x <- data.frame(x = c(NA, NA, NA), y = c(1, 2, NA), z = c(5, 6, 7))
x %>%
select(ColNums_NotAllMissing(.))
or, the other way around
Cols_AllMissing <- function(df){ # helper function
as.vector(which(colSums(is.na(df)) == nrow(df)))
}
x %>%
select(-Cols_AllMissing(.))
To find the columns with all values missing
allmisscols <- apply(dataset,2, function(x)all(is.na(x)));
colswithallmiss <-names(allmisscols[allmisscols>0]);
print("the columns with all values missing");
print(colswithallmiss);
To test whether columns have all missing values:
apply(test1,2,function(x) {all(is.na(x))})
To get which columns have all missing values:
test1.nona <- test1[ , colSums(is.na(test1)) == 0]
The following command gives you a nice table with the columns that have NA values:
sapply(dataframe, function(x)all(any(is.na(x))))
It's an improvement for the first answer you got, which doesn't work properly from some cases.