I have a basic input_fn
that can be used with Tensorflow Estimators below. It works flawlessly without setting the num_epochs
parameter; the obtained tensor has a discrete shape. Pass in num_epochs
as anything other than None
results in an unknown shape. My issue lies with constructing sparse tensors whilst using num_epochs
; I cannot figure out how to generically create said tensors without knowing the shape of the input tensor.
Can anyone think of a solution to this problem? I'd like to be able to pass num_epochs=1
to be able to evaluate only 1 time over the data set, as well as to pass to predict
to yield a set of predictions the size of the data set, no more no less.
def input_fn(batch_size):
examples_op = tf.contrib.learn.read_batch_examples(
FILE_NAMES,
batch_size=batch_size,
reader=tf.TextLineReader,
num_epochs=1,
parse_fn=lambda x: tf.decode_csv(x, [tf.constant([''], dtype=tf.string)] * len(HEADERS)))
examples_dict = {}
for i, header in enumerate(HEADERS):
examples_dict[header] = examples_op[:, i]
continuous_cols = {k: tf.string_to_number(examples_dict[k], out_type=tf.float32)
for k in CONTINUOUS_FEATURES}
# Problems lay here while creating sparse categorical tensors
categorical_cols = {
k: tf.SparseTensor(
indices=[[i, 0] for i in range(examples_dict[k].get_shape()[0])],
values=examples_dict[k],
shape=[int(examples_dict[k].get_shape()[0]), 1])
for k in CATEGORICAL_FEATURES}
feature_cols = dict(continuous_cols)
feature_cols.update(categorical_cols)
label = tf.string_to_number(examples_dict[LABEL], out_type=tf.int32)
return feature_cols, label