I have a dataset as follows,
Id Latitude longitude
1 25.42 55.47
2 25.39 55.47
3 24.48 54.38
4 24.51 54.54
I want to find the nearest distance for every point for the dataset. I found the following distance function in the internet,
from math import radians, cos, sin, asin, sqrt
def distance(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
km = 6367 * c
return km
I am using the following function,
shortest_distance = []
for i in range(1,len(data)):
distance1 = []
for j in range(1,len(data)):
distance1.append(distance(data['Longitude'][i], data['Latitude'][i], data['Longitude'][j], data['Latitude'][j]))
shortest_distance.append(min(distance1))
But this code is looping twice for each entry and return n^2 iterations and in turn it is very slow. My dataset contains nearly 1 million records and each time looping through all the elements twice is becoming very costly.
I want to find the better way to find out the nearest point for each row. Can anybody help me in finding a way to solve this in python ?
Thanks
The brute force method of finding the nearest of N
points to a given point is O(N)
-- you'd have to check each point.
In contrast, if the N
points are stored in a KD-tree, then finding the nearest point is on average O(log(N))
.
There is also the additional one-time cost of building the KD-tree, which requires O(N)
time.
If you need to repeat this process N
times, then the brute force method is O(N**2)
and the kd-tree method is O(N*log(N))
.
Thus, for large enough N
, the KD-tree will beat the brute force method.
See here for more on nearest neighbor algorithms (including KD-tree).
Below (in the function using_kdtree
) is a way to compute the great circle arclengths of nearest neighbors using scipy.spatial.kdtree
.
scipy.spatial.kdtree
uses the Euclidean distance between points, but there is a formula for converting Euclidean chord distances between points on a sphere to great circle arclength (given the radius of the sphere).
So the idea is to convert the latitude/longitude data into cartesian coordinates, use a KDTree
to find the nearest neighbors, and then apply the great circle distance formula to obtain the desired result.
Here are some benchmarks. Using N = 100
, using_kdtree
is 39x faster than the orig
(brute force) method.
In [180]: %timeit using_kdtree(data)
100 loops, best of 3: 18.6 ms per loop
In [181]: %timeit using_sklearn(data)
1 loop, best of 3: 214 ms per loop
In [179]: %timeit orig(data)
1 loop, best of 3: 728 ms per loop
For N = 10000
:
In [5]: %timeit using_kdtree(data)
1 loop, best of 3: 2.78 s per loop
In [6]: %timeit using_sklearn(data)
1 loop, best of 3: 1min 15s per loop
In [7]: %timeit orig(data)
# untested; too slow
Since using_kdtree
is O(N log(N))
and orig
is O(N**2)
, the factor by
which using_kdtree
is faster than orig
will grow as N
, the length of
data
, grows.
import numpy as np
import scipy.spatial as spatial
import pandas as pd
import sklearn.neighbors as neighbors
from math import radians, cos, sin, asin, sqrt
R = 6367
def using_kdtree(data):
"Based on https://stackoverflow.com/q/43020919/190597"
def dist_to_arclength(chord_length):
"""
https://en.wikipedia.org/wiki/Great-circle_distance
Convert Euclidean chord length to great circle arc length
"""
central_angle = 2*np.arcsin(chord_length/(2.0*R))
arclength = R*central_angle
return arclength
phi = np.deg2rad(data['Latitude'])
theta = np.deg2rad(data['Longitude'])
data['x'] = R * np.cos(phi) * np.cos(theta)
data['y'] = R * np.cos(phi) * np.sin(theta)
data['z'] = R * np.sin(phi)
tree = spatial.KDTree(data[['x', 'y','z']])
distance, index = tree.query(data[['x', 'y','z']], k=2)
return dist_to_arclength(distance[:, 1])
def orig(data):
def distance(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2.0)**2 + cos(lat1) * cos(lat2) * sin(dlon/2.0)**2
c = 2 * asin(sqrt(a))
km = R * c
return km
shortest_distance = []
for i in range(len(data)):
distance1 = []
for j in range(len(data)):
if i == j: continue
distance1.append(distance(data['Longitude'][i], data['Latitude'][i],
data['Longitude'][j], data['Latitude'][j]))
shortest_distance.append(min(distance1))
return shortest_distance
def using_sklearn(data):
"""
Based on https://stackoverflow.com/a/45127250/190597 (Jonas Adler)
"""
def distance(p1, p2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
lon1, lat1 = p1
lon2, lat2 = p2
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
km = R * c
return km
points = data[['Longitude', 'Latitude']]
nbrs = neighbors.NearestNeighbors(n_neighbors=2, metric=distance).fit(points)
distances, indices = nbrs.kneighbors(points)
result = distances[:, 1]
return result
np.random.seed(2017)
N = 1000
data = pd.DataFrame({'Latitude':np.random.uniform(-90,90,size=N),
'Longitude':np.random.uniform(0,360,size=N)})
expected = orig(data)
for func in [using_kdtree, using_sklearn]:
result = func(data)
assert np.allclose(expected, result)
You can do this very efficiently by calling a library that implements smart algorithms for this, one example would be sklearn which has a NearestNeighbors
method that does exactly this.
Example of the code modified to do this:
from sklearn.neighbors import NearestNeighbors
import numpy as np
def distance(p1, p2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
lon1, lat1 = p1
lon2, lat2 = p2
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367 * c
return km
points = [[25.42, 55.47],
[25.39, 55.47],
[24.48, 54.38],
[24.51, 54.54]]
nbrs = NearestNeighbors(n_neighbors=2, metric=distance).fit(points)
distances, indices = nbrs.kneighbors(points)
result = distances[:, 1]
which gives
>>> result
array([ 1.889697 , 1.889697 , 17.88530556, 17.88530556])
You can use a dictionary to hash some calculations. Your code calculates the distance A to B many times (A and B being 2 arbitrary points in your dataset).
Either implement your own cache:
from math import radians, cos, sin, asin, sqrt
dist_cache = {}
def distance(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
try:
return dist_cache[(lon1, lat1, lon2, lat2)]
except KeyError:
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
km = 6367 * c
dist_cache[(lon1, lat1, lon2, lat2)] = km
return km
Or use lru_cache:
from math import radians, cos, sin, asin, sqrt
from functools import lru_cache
@lru_cache
def distance(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
km = 6367 * c
return km