I need to calculate the mean in columns of an array with more than 1000 rows.
np.mean(some_array)
gives me
inf
as output
but i am pretty sure the values are ok. I am loading a csv from here into my Data
variable and column 'cement' is "healthy" from my point of view.
In[254]:np.mean(Data[:230]['Cement'])
Out[254]:275.75
but if I increase the number of rows the problem starts:
In [259]:np.mean(Data[:237]['Cement'])
Out[259]:inf
but when i look at the Data
In [261]:Data[230:237]['Cement']
Out[261]:
array([[ 425. ],
[ 333. ],
[ 250.25],
[ 491. ],
[ 160. ],
[ 229.75],
[ 338. ]], dtype=float16)
i do not find a reason for this behaviour P.S This happens in Python 3.x using wakari (cloud based Ipython)
Numpy Version '1.8.1'
I am loading the Data with:
No_Col=9
conv = lambda valstr: float(valstr.replace(',','.'))
c={}
for i in range(0,No_Col,1):
c[i] = conv
Data=np.genfromtxt(get_data,dtype=float16 , delimiter='\t', skip_header=0, names=True, converters=c)